精英家教网 > 高中数学 > 题目详情
9.已知x>0,2<x2+x<$\frac{5}{2}$,则下列不正确的是 (  )
A.cos(x-1)<sin$\frac{π}{2}$xB.sin2x<sinx2C.sinx2<cos(x-1)D.sin2x>sin(2-x)

分析 根据题意,求出x的取值范围,再判断下列不等式是否成立即可.

解答 解:∵x>0,2<x2+x<$\frac{5}{2}$,
∴$\left\{\begin{array}{l}{x>0}\\{{x}^{2}+x-2>0}\\{{x}^{2}+x-\frac{5}{2}<0}\end{array}\right.$,
解得1<x<$\frac{\sqrt{11}-1}{2}$,
∴1<x<$\frac{π}{2}$;
∴0<x-1<$\frac{π}{2}$-1,
∴cos(x-1)>sin$\frac{π}{2}$x,A错误,
sin2x<sinx<sinx2,B正确;
sinx2<cos(x-1),C正确,
sin2x>sin(2-x),D正确.
故选:A.

点评 本题考查了不等式的解法与应用问题,也考查了三角函数的单调性问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{2}$=1的长轴长为6,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{7}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{34}}}{6}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线2x+y-7=0与直线x+2y-5=0的交点是(  )
A.(3,-1)B.(-3,1)C.(-3,-1)D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某工厂制作如图所示的一种标识,在半径为R的圆内做一个关于圆心对称的“工”字图形,“工”字图形由横、竖、横三个等宽的矩形组成,两个横距形全等且成是竖矩形长的$\sqrt{3}$倍,设O为圆心,∠AOB=2α,“工”字图形的面积记为S.
(1)将S表示为α的函数;
(2)为了突出“工”字图形,设计时应使S尽可能大,则当α为何值时,S最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$y=sin(2x-\frac{2π}{3})$(  )
A.在区间$[\frac{π}{12},\frac{7π}{12}]$上单调递增B.在区间$[\frac{π}{12},\frac{7π}{12}]$上单调递减
C.在区间$[-\frac{π}{6},\frac{π}{3}]$上单调递减D.在区间$[-\frac{π}{6},\frac{π}{3}]$上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线y2=2px(p>0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:
(1)${y_1}{y_2}=-{p^2},{x_1}{x_2}=\frac{p^2}{4}$;
(2)$\frac{1}{|AF|}+\frac{1}{|BF|}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}中,a1=3,a2=6;设${b_n}={2^{a_n}}$,数列{bn}的前n项和为${S_n}({n∈{N^*}})$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在正整数n,t,使得$\frac{{{S_n}-t{b_n}}}{{{S_{n+1}}-t{b_{n+1}}}}<\frac{1}{16}$,若存在,求出n,t的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xetx-ex+1,其中t∈R.
(1)若方程f(x)=1有两个实数根,求t的取值范围;
(2)若f(x)在(0,+∞)上无极值点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=$\frac{1}{2}$x+b是曲线y=lnx(x>0)的一条切线,则实数b=(  )
A.ln2+1B.ln2-1C.ln3+1D.ln3-1

查看答案和解析>>

同步练习册答案