分析 通过余弦定理以及正弦定理,以及两角和的正弦函数化简函数的表达式,把正弦函数余弦函数化为正切,即可得到结果.
解答 解:在△ABC中,∵a2+b2=3c2,由余弦定理a2+b2-2abcosC=c2,可得:abcosC=c2,即:$\frac{abcosC}{{c}^{2}}$=1,
∴由正弦定理可得,$\frac{sinAsinBcosC}{sin(A+B)sinC}$=1,可得:$\frac{sinAsinBcosC}{(sinAcosB+cosAsinB)sinC}$=1,
∴分子,分母同时除以cosAcosBcosC,可得:$\frac{tanAtanB}{(tanA+tanB)tanC}$=1,
∴$\frac{2tanAtanB}{tanC(tanA+tanB)}$=2.
故答案为:2.
点评 本题考查同角三角函数的基本关系,正弦定理、余弦定理的应用,式子变形是解题的关键和难点.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{100}{101}$ | B. | $\frac{99}{101}$ | C. | $\frac{99}{100}$ | D. | $\frac{101}{100}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ln2+1 | B. | ln2-1 | C. | ln3+1 | D. | ln3-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{0}$ | B. | $\overrightarrow{PC}$+$\overrightarrow{PA}$=$\overrightarrow{0}$ | C. | $\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$ | D. | $\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com