精英家教网 > 高中数学 > 题目详情
2.用数学归纳法证明:
(1)1+2+3+…+n=$\frac{1}{2}$n(n+1)(n∈N*);
(2)1+3+5+…+(2n-1)=n2(n∈N*);
(3)1+2+22+…+2n-1=2n-1(n∈N*).

分析 用数学归纳法证明:①当n=1时,去证明等式成立;②假设当n=k时,等时成立,用上归纳假设后,去证明当n=k+1时,等式也成立即可.

解答 证明:(1)①当n=1时,左边=1,右边=1,
∴左边=右边
②假设n=k时等式成立,即1+2+3+…+k=$\frac{1}{2}$k(k+1),
当n=k+1时,1+2+3+…+k+k+1=$\frac{1}{2}$k(k+1)+(k+1)=$\frac{1}{2}$(k+1)•(k+2),等式成立,
由①②1+2+3+…+n=$\frac{1}{2}$n(n+1)对n∈N*等式成立;
(2):①当n=1时,左边=1,右边=1,
∴左边=右边
②假设n=k时等式成立,即1+3+5+…+(2k-1)=k2
当n=k+1时,等式左边=1+3+5+…+(2k-1)+(2k+1)=k2+(2k+1)=(k+1)2
由①②可知1+3+5+…+(2n-1)=n2对n∈N*等式成立.,
(3)①)当n=1时,左边=1,右边=21-1=1,
∴等式成立,
②假设当n=k时,等时成立,即1+2+22+…+2k-1=2k-1,
那么,当n=k+1时,1+2+22+…+2k-1+2k=2k-1+2k
=2×2k-1,
=2k+1-1,
这就是说,当n=k+1时,等式也成立,
由①②,可知1+2+22+…+2n-1=2n-1,对n∈N*等式成立.

点评 本题考查用数学归纳法证明等式成立,用数学归纳法证明问题的步骤是:第一步验证当n=n0时命题成立,第二步假设当n=k时命题成立,那么再证明当n=k+1时命题也成立.本题解题的关键是利用第二步假设中结论证明当n=k+1时成立,本题是一个中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知奇函数f(x)满足f(x+1)=f(x),当x∈(0,1)时,f(x)=2x,则f(log210)等于$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)<f(x)g′(x),且f(x)=axg(x)(a>0且a≠1),$\frac{f(1)}{g(1)}+\frac{{f({-1})}}{{g({-1})}}=\frac{5}{2}$,则曲线$y=\frac{f(x)}{g(x)}$在x=1处的切线方程为:xln2+2y-ln2-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ≤π)的图象如图所示,则函数f(x)的解析式为2sin($\frac{11}{6}$x-$\frac{5π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=2m(lnx+x)-x2有唯一零点,则m的取值范围是m<0或m=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知在△ABC中,三边a,b,c的对角分别为A,B,C,满足a2+b2=3c2,则$\frac{2tanAtanB}{tanC(tanA+tanB)}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数y=f(x)在区间(a,b)的导函数f′(x),f′(x)在区间(a,b)的导函数f″(x),若在区间(a,b)上f″(x)<0恒成立,则称函数f(x)在区间(a,b)上为凸函数,已知f(x)=$\frac{1}{12}$x4-$\frac{1}{6}$mx3-$\frac{3}{2}$x2,若当实数m满足|m|≤2,函数f(x)在(a,b)上为凸函数,则b-a的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=a1nx+$\frac{1-a}{2}$x2-x(a∈R且a≠1),若?x0∈[1,+∞),使得f(x0)<$\frac{a}{a-1}$,则a的取值范围为(  )
A.(-$\sqrt{2}-$1,$\sqrt{2}-1$)B.(-$\sqrt{2}-1$,1)C.(1,+∞)D.(-$\sqrt{2}-1$,$\sqrt{2}-1$)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.有下列结论,正确的序号为③④.
①存在α∈(0,$\frac{π}{2}$),使sinα+cosα=$\frac{1}{3}$;
②存在区间(a,b),使y=cosx为减函数且sinx<0;
③函数y=4sin(2x+$\frac{π}{3}$)的图象关于点(-$\frac{π}{6}$,0)对称;
④函数y=cos2x+sin($\frac{π}{2}$-x)是偶函数,且既有最大值,又有最小值.

查看答案和解析>>

同步练习册答案