3£®¼ºÖªÅ×ÎïÏßC1£ºx2=4yµÄ½¹µãF£¬¹ýµãFµÄÖ±ÏßLÓëC1ÏཻÓÚABÁ½µã£¬ÓëC2£º$\frac{x^2}{9}+\frac{y^2}{8}$=1ÏཻÓÚC£¬DÁ½µã£¬ÇÒ$\overrightarrow{AC}$Óë$\overrightarrow{BD}$ͬÏò£®
£¨1£©ÈôØ­ACØ­=Ø­BDØ­£¬ÇóÖ±ÏßLµÄбÂÊ£®
£¨2£©ÉèC1ÔÚµãA´¦µÄÇÐÏßÓëxÖáµÄ½»µãΪM£¬Ö¤Ã÷£ºÖ±ÏßlÈÆµãFÐýתʱ£¬¡÷MFD×ÜÊǶ۽ÇÈý½ÇÐΣ®

·ÖÎö £¨1£©Éè³öµãµÄ×ø±ê£¬¸ù¾ÝÏòÁ¿µÄ¹ØÏµ£¬µÃµ½£¨x1+x2£©2-4x1x2=£¨x3+x4£©2-4x3x4£¬ÉèÖ±ÏßlµÄ·½³Ì£¬·Ö±ðÓëC1£¬C2¹¹³É·½³Ì×飬ÀûÓÃΤ´ï¶¨Àí£¬·Ö±ð´úÈëµÃµ½¹ØÓÚkµÄ·½³Ì£¬½âµÃ¼´¿É£»
£¨2£©¸ù¾Ýµ¼ÊýµÄ¼¸ºÎÒâÒåµÃµ½C1ÔÚµãA´¦µÄÇÐÏß·½³Ì£¬Çó³öµãMµÄ×ø±ê£¬ÀûÓÃÏòÁ¿µÄ³Ë»ý¡ÏAFMÊÇÈñ½Ç£¬ÎÊÌâµÃÒÔÖ¤Ã÷£®

½â´ð ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬C£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
ÒòΪ$\overrightarrow{AC}$Óë$\overrightarrow{BD}$ͬÏò£¬ÇÒ|AC|=|BD|£¬
ËùÒÔ$\overrightarrow{AC}$=$\overrightarrow{BD}$£¬
´Ó¶øx3-x1=x4-x2£¬¼´x1-x2=x3-x4£¬ÓÚÊÇ
£¨x1+x2£©2-4x1x2=£¨x3+x4£©2-4x3x4£¬¢Û
ÉèÖ±ÏßµÄбÂÊΪk£¬ÔòlµÄ·½³ÌΪy=kx+1£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃx2-4kx-4=0£¬¶øx1£¬x2ÊÇÕâ¸ö·½³ÌµÄÁ½¸ù£¬
ËùÒÔx1+x2=4k£¬x1x2=-4£¬¢Ü
ÓÉ$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{9}=1}\end{array}\right.$£¬µÃ£¨9+8k2£©x2+16kx-64=0£¬¶øx3£¬x4ÊÇÕâ¸ö·½³ÌµÄÁ½¸ù£¬
ËùÒÔx3+x4=-$\frac{16k}{9+8{k}^{2}}$£¬x3x4=-$\frac{64}{9+8{k}^{2}}$£¬¢Ý
½«¢Ü¢Ý´úÈë¢Û£¬µÃ16£¨k2+1£©=£¨-$\frac{16k}{9+8{k}^{2}}$£©2+4¡Á$\frac{64}{9+8{k}^{2}}$£¬
ËùÒÔ£¨9+8k2£©2=16¡Á9£¬
½âµÃk=¡À$\frac{\sqrt{6}}{4}$£®
£¨2£©ÓÉx2=4yµÃy¡ä=$\frac{1}{2}$x£¬
ËùÒÔC1ÔÚµãA´¦µÄÇÐÏß·½³ÌΪy-y1=$\frac{1}{2}$x1£¨x-x1£©£¬
¼´y=$\frac{1}{2}$x1x-$\frac{1}{4}$x12£¬
Áîy=0£¬µÃx=$\frac{1}{2}$x1£¬
M£¨$\frac{1}{2}$x1£¬0£©£¬
ËùÒÔ$\overrightarrow{FM}$=£¨$\frac{1}{2}$x1£¬-1£©£¬
¶ø$\overrightarrow{FA}$=£¨x1£¬y1-1£©£¬
ÓÚÊÇ$\overrightarrow{FM}$•$\overrightarrow{FA}$=$\frac{1}{2}$x12-y1+1=$\frac{1}{4}$x12+1£¾0£¬
Òò´Ë¡ÏAFMÊÇÈñ½Ç£¬´Ó¶ø¡ÏMFD=180¡ã-¡ÏAFMÊǶ۽ǣ¬
¹ÊÖ±ÏßlÈÆµãFÐýתʱ£¬¡÷MFD×ÜÊǶ۽ÇÈý½ÇÐΣ®

µãÆÀ ±¾Ì⿼²éÁËÔ²×¶ÇúÏߵĺÍÖ±ÏßµÄλÖÃÓë¹ØÏµ£¬¹Ø¼üÊÇÁªÁ¢·½³Ì£¬¹¹Ôì·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí£¬ÒÔ¼°ÏòÁ¿µÄ¹ØÏµ£¬µÃµ½¹ØÓÚkµÄ·½³Ì£¬¼ÆËãÁ¿´ó£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑ֪ijÎïÌåµÄÎ»ÒÆS£¨Ã×£©Óëʱ¼ät£¨Ã룩µÄ¹ØÏµÊÇS£¨t£©=3t-t2£®
£¨¢ñ£©Çót=0Ãëµ½t=2ÃëµÄƽ¾ùËÙ¶È£»
£¨¢ò£©Çó´ËÎïÌåÔÚt=2ÃëµÄ˲ʱËÙ¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®º¯Êýy=|lnx|£¨0£¼x¡Üe2£©µÄÖµÓòÊÇ£¨¡¡¡¡£©
A£®£¨0£¬+¡Þ£©B£®£¨0£¬2]C£®[0£¬+¡Þ£©D£®[2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êý$f£¨x£©=\sqrt{£¨1+x£©£¨2-x£©}$µÄ¶¨ÒåÓòÊǼ¯ºÏA£¬º¯Êýg£¨x£©=ln£¨x-a£©µÄ¶¨ÒåÓòÊǼ¯ºÏB£®
£¨1£©Ç󼯺ÏA¡¢B£»
£¨2£©ÈôA¡ÉBÖÐÖÁÉÙÓÐÒ»¸öÔªËØ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Éèm¡ÊR£¬ÃüÌâ¡°Èôm¡Ü0£¬Ôò·½³Ìx2+x-m=0ÓÐʵ¸ù¡±µÄÄæ·ñÃüÌâÊÇ£¨¡¡¡¡£©
A£®Èô·½³Ìx2+x-m=0ÓÐʵ¸ù£¬Ôòm£¾0B£®Èô·½³Ìx2+x-m=0ûÓÐʵ¸ù£¬Ôòm£¾0
C£®Èô·½³Ìx2+x-m=0ÓÐʵ¸ù£¬Ôòm¡Ü0D£®Èô·½³Ìx2+x-m=0ûÓÐʵ¸ù£¬Ôòm¡Ü0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®¹ýÆ½ÃæÍâÒ»µã¿ÉÒÔ×÷ÎÞÊýÌõÖ±ÏßÓëÒÑÖªÆ½ÃæÆ½ÐУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®500Á¾Æû³µ¾­¹ýijһÀ×´ïµØÇø£¬Ê±ËÙÆµÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£¬ÔòʱËÙ³¬¹ý60km/hµÄÆû³µÊýÁ¿Îª190Á¾£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª½Ç¦Á¡Ê[-30¡ã£¬120¡ã]£»
£¨1£©Ð´³öËùÓÐÓë¦ÁÖÕ±ßÏàͬµÄ½Ç¦ÂµÄ¼¯ºÏA£»²¢ÔÚÖ±½Ç×ø±êϵÖУ¬ÓÃÒõÓ°²¿·Ö±íʾ¼¯ºÏAÖнÇÖÕ±ßËùÔÚÇøÓò£»
£¨2£©ÔÚ£¨1£©Ìõ¼þÏ£¬Èô tan¦Á=$\frac{4}{3}$£¬¦Á¡ÊA£¬Çósin¦Á£¬cos¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÉèÖ±ÏßlµÄ·½³ÌΪ£¨a-1£©x+3y+3-a=0£¨a¡ÊR£©£®
£¨1£©ÈôlÔÚÁ½×ø±êÖáÉϵĽؾàÏàµÈ£¬ÇólµÄ·½³Ì£»
£¨2£©Èôl²»¾­¹ýµÚ¶þÏóÏÞ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸