| A. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1 | B. | $\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{32}$=1 | C. | $\frac{{x}^{2}}{3}$-y2=1 | D. | x2-$\frac{{y}^{2}}{3}$=1 |
分析 求出抛物线的焦点坐标,顶点双曲线方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)焦距,得到ab关系,求出P的坐标,把P点代入双曲线方程求出双曲线的标准方程.
解答 解:∵抛物线y2=8x的焦点F(2,0),
∴由题意知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F(2,0),
∴a2+b2=4,
∵P是抛物线与双曲线的一个交点,|PF|=5,
∴p点横坐标xP=3,代入抛物线y2=8x得P(3,±2$\sqrt{6}$),
把P(3,±2$\sqrt{6}$)代入双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)得$\frac{9}{{a}^{2}}-\frac{24}{{b}^{2}}=1$,整理,得a4-37a2+36=0,
解得a2=1,或a2=36(舍)
则b2=3,
所求双曲线方程为:x2-$\frac{{y}^{2}}{3}$=1.
故选:D.
点评 本题考查双曲线的方程的求法,抛物线的简单性质的应用,是中档题,解题时要熟练掌握抛物线、双曲线的简单性质.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p1,p2 | B. | p1,p3 | C. | p1,p4 | D. | p2,p3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {1,5} | C. | {1,4} | D. | {1,4,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 8 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com