| A. | 12 | B. | 8 | C. | 6 | D. | 4 |
分析 由$\overrightarrow{a}⊥\overrightarrow{b}$便可得出a3•a13=16,而根据条件{an}为等比数列且各项均为正数,从而可以得出${{a}_{8}}^{2}=16$,从而得到a8=4,这样便得出m=8.
解答 解:∵$\overrightarrow{a}⊥\overrightarrow{b}$;
∴$\overrightarrow{a}•\overrightarrow{b}=0$;
即2•(-8)+a3•a13=0;
∴a3•a13=16;
∵{an}为等比数列,且各项均为正数;
∴${a}_{3}•{a}_{13}={{a}_{8}}^{2}$;
∴${{a}_{8}}^{2}=16$;
∴a8=4;
∴m=8.
故选:B.
点评 考查向量垂直的充要条件,向量数量积的坐标运算,以及等比数列的通项公式及性质.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{11}{36}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1 | B. | $\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{32}$=1 | C. | $\frac{{x}^{2}}{3}$-y2=1 | D. | x2-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com