分析 (1)当n≥2时通过an+1=3Sn-2与an=3Sn-1-2作差,进而整理即得结论;
(2)通过(1)可知数列{bn}的通项公式,利用裂项相消法计算即得结论.
解答 (1)解:∵an+1=3Sn-2,
∴当n≥2时,an=3Sn-1-2,
两式相减得:an+1-an=3an,即an+1=4an(n≥2),
又∵a1=2,a2=3S1-2=4,
∴数列{an}的通项公式an=$\left\{\begin{array}{l}{2,}&{n=1}\\{{4}^{n-1},}&{n≥2}\end{array}\right.$;
(2)证明:由(1)可知bn=$\left\{\begin{array}{l}{2,}&{n=1}\\{\frac{1}{n-1},}&{n≥2}\end{array}\right.$,
∵当n≥2时,bnbn+1=$\frac{1}{n-1}•\frac{1}{n}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
∴b1b2+b2b3+…+bnbn+1
=2×1+(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n-1}$-$\frac{1}{n}$)
=3-$\frac{1}{n}$
<3.
点评 本题是一道关于数列与不等式的综合题,考查裂项相消法、分类讨论的思想,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{341}{25}$,77] | B. | [$\frac{441}{25}$,81] | C. | [$\sqrt{37}$,77] | D. | [$\frac{1}{5}$,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 城市 | A | B | C | D | E |
| 4S店个数x | 3 | 4 | 6 | 5 | 2 |
| 销量y(台) | 28 | 29 | 37 | 31 | 25 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 椭圆 | B. | 圆 | C. | 抛物线 | D. | 双曲线 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com