精英家教网 > 高中数学 > 题目详情
设函数y=f(x)在(-3,3)内是奇函数,且对任意x,y都有f(x)=f(y)+f(x-y),当x<0时,f(x)>0,f(1)=2.
(Ⅰ)求f(2)的值;
(Ⅱ)判断f(x)在区间(-3,3)内的单调性,并证明;
(Ⅲ)若函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.
考点:抽象函数及其应用,函数单调性的性质
专题:函数的性质及应用
分析:(Ⅰ)令x=2,y=1,由f(x)-f(y)=f(x-y)及f(1)=-2即可求得f(2);
(Ⅱ)在f(x)-f(y)=f(x-y)中,令x=x1,y=x2,结合已知条件及函数的单调性可以作出判断;
(Ⅲ)由奇函数的性质,g(x)≤0可化为f(x-1)-f(2x-3)≤0,也即f(x-1)≤f(2x-3),依据(2)问的单调性及函数定义域可得一不等式组,解出即可.
解答: 解:(Ⅰ)令x=2,y=1,
由f(x)-f(y)=f(x-y),得f(2)-f(1)=f(2-1)=f(1),
又f(1)=-2,解得f(2)=-4.
(Ⅱ)f(x)在(-3,3)上是减函数.
证明:在(-3,3)上任取x1,x2,且x1<x2,则x1-x2<0,
令x=x1,y=x2
由f(x)-f(y)=f(x-y),得f(x1)-f(x2)=f(x1-x2),
∵当x<0时,f(x)>0,且x1-x2<0,
∴f(x1-x2)>0,即f(x1)-f(x2)>0,∴f(x1)>f(x2),
∴f(x)在(-3,3)上是减函数.
(Ⅲ)由函数f(x)在(-3,3)上是奇函数,
得g(x)=f(x-1)+f(3-2x)=f(x-1)-f(2x-3),
g(x)≤0的解集即是f(x-1)-f(2x-3)≤0的解集.
f(x-1)-f(2x-3)≤0即是f(x-1)≤f(2x-3),
由(2)知奇函数f(x) 在(-3,3)上是减函数,
解得0<x≤2.
∴不等式g(x)≤0的解集为{x|0<x≤2}.
点评:本题考查抽象函数的单调性、奇偶性以及抽象不等式的解法,定义及函数性质是解决抽象函数问题的主要依据.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,左、右顶点分别是A、C,上顶点为B,记△FBC外接圆为圆P.
(Ⅰ)判断直线AB和圆P能否相切?并说明理由;
(Ⅱ)若椭圆短轴长为2
3
,且椭圆上的点到F点最近距离为1,M、N是该椭圆上满足|OM|2+|ON|2=7的两点,求证:|kOM•kON|是定值,并求出此定值;
(Ⅲ)是根据(Ⅱ)的求解过程和结果,将命题进行推广,得到一个关于椭圆的一般性结论(无需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=2,|
b
|=1,
a
b
=1.
(1)求|
a
+
b
|的值;   
(2)若k
a
+
b
a
-3
b
垂直,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边长分别为a,b,c,若b2+c2=a2+
2
bc
(1)求A的大小;
(2)求2cosBsinC+sin(A+2C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明:方程3x=12只有一个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(Ⅰ)求证:平面CFB1⊥平面EFB1
(Ⅱ)若求三棱锥B1-EFC的体积为1,求此正方体的棱长.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2x与y=g(x)的图象关于直线y=x对称,则g(2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在m∈R,使函数f(x)=|x2-16|-x2+4x-m在[-1,a](a∈N*)上有三个零点,则满足条件的a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若a9=0,则有a1+a2+…+an=a1+a2+…+a17-n(其中n<17,且n∈N*).类比上述性质,在等比数列{bn}中,若b10=1,则有
 

查看答案和解析>>

同步练习册答案