精英家教网 > 高中数学 > 题目详情
14.曲线y=lnx-x2在M(x0,y0)处的切线斜率为-1,则此切线方程是(  )
A.y=-x-2B.y=-x-1C.y=-x+1D.y=-x

分析 求得函数的导数,可得切线的斜率,解方程可得切点的横坐标,进而得到切点坐标,由点斜式方程可得切线的方程.

解答 解:y=lnx-x2的导数为y′=$\frac{1}{x}$-2x,(x>0),
可得在M(x0,y0)处的切线斜率为$\frac{1}{{x}_{0}}$-2x0=-1,
解得x0=1(-$\frac{1}{2}$舍去),
可得切点为(1,-1),
即有切线的方程为y+1=-(x-1),
即为y=-x.
故选:D.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和运用点斜式方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.掷两颗质地均匀的骰子,在已知它们的点数不同的条件下,有一颗是6点的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等腰直角三角形ABC中,已知AB=AC=1,E,F分别是边AB,AC上的点,且$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,其中m,n∈(0,1)且m+2n=1,若EF,BC的中点分别为M,N,则|$\overrightarrow{MN}$|的最小值是$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f′(x)是偶函数f(x)(x∈(-∞,0)∪(0,+∞)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-1,0)∪(0,1)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知cosα=$\frac{12}{13}$,α∈(${\frac{3}{2}$π,2π),则cos(α-$\frac{π}{4}}$)的值为(  )
A.$\frac{{5\sqrt{2}}}{13}$B.$\frac{{7\sqrt{2}}}{13}$C.$\frac{{17\sqrt{2}}}{26}$D.$\frac{{7\sqrt{2}}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1的离心率为(  )
A.$\frac{4}{5}$B.$\frac{5}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.通过随机调查200名性别不同的高中生是否爱好某项运动,得到如下的列联表:
爱好6545
不爱好4050
计算得:K2≈4.258,参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别无关”
D.有99%以上的把握认为“爱好该项运动与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在函数y=xlnx的图象上的点A(1,0)处的切线方程是y=x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥BD.
(1)证明:PD=PB;
(2)若PD⊥PB,∠DAB=60°,PA=AD,求二面角B-PA-D的余弦值.

查看答案和解析>>

同步练习册答案