精英家教网 > 高中数学 > 题目详情
20.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b+c=12,C=120°,sinB=$\frac{{5\sqrt{3}}}{14}$,则cosA+cosB的值为$\frac{12}{7}$.

分析 由条件求得cosB的值,再根据cosA=-cos(B+C)=-cos(120°+B)利用两角和的余弦公式求得cosA,从而求得cosA+cosB的值.

解答 解:在△ABC中,∵C=120°,sinB=$\frac{{5\sqrt{3}}}{14}$,∴cosB=$\sqrt{{1-sin}^{2}B}$=$\frac{11}{14}$,
cosA=-cos(B+C)=-cos(120°+B)=-cos120°cosB+sin120°sinB=$\frac{1}{2}×\frac{11}{14}$+$\frac{\sqrt{3}}{2}×\frac{5\sqrt{3}}{14}$=$\frac{13}{14}$,
故cosA+cosB=$\frac{13}{14}$+$\frac{11}{14}$=$\frac{12}{7}$,
故答案为:$\frac{12}{7}$.

点评 本题主要考查同角三角函数的基本关系、诱导公式、两角和的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设集合A={-1,0,1},B={x|x2-x<2},则集合A∩B=(  )
A.{-1,0,1}B.{0,1}C.{-1,0}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题甲:sina-cosa=$\sqrt{2}$,命题乙:双曲线$\frac{{x}^{2}}{co{s}^{2}a}$-$\frac{{y}^{2}}{si{n}^{2}a}$=1的渐近线与圆(x-1)2+y2=$\frac{1}{2}$相切,则命题甲为命题乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}的前n项和为Sn,Sn=2n-n,等差数列{bn}的各项为正实数,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3-1成等比数列.
(I)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an•bn,当n≥2时求数列{cn}的前n项和An

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,正四棱锥S-ABCD中,SA=AB=2,E,F,G分别为BC,SC,CD的中点.设P为线段FG上任意一点.
(Ⅰ)求证:EP⊥AC;
(Ⅱ)当P为线段FG的中点时,求直线BP与平面EFG所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n份,统计结果如图表所示.
组号年龄
分组
答对全卷
的人数
答对全卷的人数
占本组的概率
1[20,30)28b
2[30,40)270.9
3[40,50)50.5
4[50,60]a0.4
(1)分别求出a,b,c,n的值;
(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X为第3组被授予“环保之星”的人数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知三角形的三边a,b,c,三角形的重心到外接圆的距离为d,外接圆半径为R,求证:a2+b2+c2+9d2=9R2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设l,m是两条不同的直线,a是一个平面,则下列说法正确的是(  )
A.若l⊥m,m?,则l⊥aB.若l⊥a,l∥m,则m⊥aC.若l∥a,m?a,则l∥mD.若l∥a,m∥a,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=$\left\{\begin{array}{l}\frac{x}{x-2}+k{x^2},x≤0\\ lgx,x>0\end{array}$有且只有2个不同零点,则实数k的取值范围是k≥0.

查看答案和解析>>

同步练习册答案