精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=$\left\{\begin{array}{l}\frac{x}{x-2}+k{x^2},x≤0\\ lgx,x>0\end{array}$有且只有2个不同零点,则实数k的取值范围是k≥0.

分析 易知1,0是函数f(x)的零点;从而可得y=$\frac{1}{x-2}$+kx没有零点;从而解得.

解答 解:当x>0时,f(1)=0;
故1是函数f(x)的零点;
故当x≤0时,
f(x)=$\frac{x}{x-2}$+kx2有且只有1个零点,
而f(0)=0;
故y=$\frac{1}{x-2}$+kx没有零点;
若$\frac{1}{x-2}$+kx=0,(x<0)
则k=-$\frac{1}{x(x-2)}$<0;
故y=$\frac{1}{x-2}$+kx没有零点时,
k≥0.
故答案为:k≥0.

点评 本题考查了分段函数与函数的零点的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b+c=12,C=120°,sinB=$\frac{{5\sqrt{3}}}{14}$,则cosA+cosB的值为$\frac{12}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x)(x∈R)是奇函数,其部分图象如图所示,则在(-2,0)上与函数
f(x)的单调性相同的是(  )
A.y=x2+1B.y=log2|x|
C.$y=\left\{\begin{array}{l}{e^x}(x≥0)\\{e^{-x}}(x<0)\end{array}\right.$D.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x+a|+|x+1|+a.
(Ⅰ)当a=1时,求不等式f(x)>5的解集;
(Ⅱ)若存在x∈[-2,-1],使f(x)≤|x-2|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知二次函数f(x)=ax2+bx+1,其中a,b∈R,g(x)=ln(ex),且函数F(x)=f(x)-g(x)在x=1处取得极值.
(Ⅰ)求a,b所满足的关系;
(Ⅱ)试判断是否存在a∈(-2,0)∪(0,2),使得对?x∈[1,2],不等式(x+a)F(x)≥0恒成立?如果存在,请求出符合条件的a的所有值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设Sn为公差不为零的等差数列{an}的前n项和,若S5=7a4,则$\frac{{3{S_7}}}{a_3}$=(  )
A.15B.17C.19D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若对任意正数x,不等式$\frac{1}{{x}^{2}+1}$≤$\frac{a}{x}$恒成立,则实数a的最小值为(  )
A.1B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,若$(\sqrt{2}c-b)cosA=acosB$,则A=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在正三棱柱ABC-A1B1C1中,已知AA1=6,三棱柱ABC-A1B1C1的体积为18$\sqrt{3}$.
(1)求正三棱柱ABC-A1B1C1的表面积;
(2)求异面直线BC1与AA1所成角的大小.

查看答案和解析>>

同步练习册答案