| A. | 1 | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
分析 由题意可得a≥$\frac{x}{{x}^{2}+1}$ 恒成立,利用基本不等式求得$\frac{x}{{x}^{2}+1}$ 的最大值为$\frac{1}{2}$,从而求得实数a的最小值.
解答 解:由题意可得a≥$\frac{x}{{x}^{2}+1}$ 恒成立.
由于$\frac{x}{{x}^{2}+1}$=$\frac{1}{x+\frac{1}{x}}$≤$\frac{1}{2}$ (当且仅当x=1时,取等号),故 $\frac{x}{{x}^{2}+1}$ 的最大值为$\frac{1}{2}$,
∴a≥$\frac{1}{2}$,即a得最小值为$\frac{1}{2}$,
故选:C.
点评 本题主要考查函数的恒成立问题,基本不等式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (-∞,0) | C. | $(-∞,-\frac{1}{e})$ | D. | $(-\frac{1}{e},e)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com