精英家教网 > 高中数学 > 题目详情
12.已知三角形的三边a,b,c,三角形的重心到外接圆的距离为d,外接圆半径为R,求证:a2+b2+c2+9d2=9R2

分析 以△ABC的外心为原点建立坐标系,可令A、B、C的坐标依次是:(Rcosα,Rsinα)、(Rcosβ,Rsinβ)、(Rcosγ,Rsinγ).令AB中点为D、△ABC的重心为G(m,n),求出m,n,进而可证明a2+b2+c2+9d2=9R2

解答 证明:以△ABC的外心为原点建立坐标系,显然,△ABC的外接圆方程是:x2+y2=R2
∴可令A、B、C的坐标依次是:(Rcosα,Rsinα)、(Rcosβ,Rsinβ)、(Rcosγ,Rsinγ).
令AB中点为D、△ABC的重心为G(m,n).
由中点坐标公式,得D的坐标为($\frac{1}{2}$R(cosα+cosβ),$\frac{1}{2}$R(sinα+sinβ)).
∵$\frac{CG}{DG}$=2,
∴有m=$\frac{Rcosγ+2R•\frac{1}{2}(cosα+cosβ)}{1+2}$=$\frac{1}{3}$R(cosα+cosβ+cosγ),n=$\frac{1}{3}$R(sinα+sinβ+sinγ).
于是:
a2=(Rcosβ-Rcosγ)2+(Rsinβ-Rsinγ)2=R2(2-2cosβcosγ-2sinβsinγ)
b2=(Rcosα-Rcosγ)2+(Rsinα-Rsinγ)2=R2(2-2cosαcosγ-2sinαsinγ),
c2=(Rcosα-Rcosβ)2+(Rsinα-Rsinβ)2=R2(2-2cosαcosβ-2sinαsinβ).
9d2=9[(m-0)2+(n-0)2]=9{[$\frac{1}{3}$R(cosα+cosβ+cosγ)-0]2+[$\frac{1}{3}$R(sinα+sinβ+sinγ)-0]2}
=R2[(cosα+cosβ+cosγ)2+(sinα+sinβ+sinγ)2]
=R2(3+2cosαcosβ+2cosβcosγ+2cosαcosγ+2sinαsinβ+2sinβsinγ+2sinαsinγ).
∴a2+b2+c2+9d2=9R2

点评 本题考查综合法的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.对于使f(x)≥N成立的所有常数N中,我们把N的最大值叫作f(x)的下确界.若a,b∈(0,+∞),且a+b=2,则$\frac{1}{3a}$+$\frac{3}{b}$的下确界为(  )
A.$\frac{16}{3}$B.$\frac{8}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=$\frac{1}{4}$x4+$\frac{1}{2}$ax2+bx+d的导函数有三个零点,分别为x1,x2,x3且满足:x1<-2,x2=2,x3>2,则实数a的取值范围是(  )
A.(-∞,-1)B.(-∞,-3)C.(-7,+∞)D.(-∞,-12)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b+c=12,C=120°,sinB=$\frac{{5\sqrt{3}}}{14}$,则cosA+cosB的值为$\frac{12}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的三视图如图所示(单位:cm),则该几何体的体积为$\frac{28}{3}π$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{-{x}^{2}+bx+c,x≤0}\end{array}\right.$满足f(0)=1,且f(0)+2f(-1)=0,求函数g(x)=f(x)+x的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.圆周上有2n个等分点(n>2),任取3点可得一个三角形,恰为直角三角形的个数为2n(n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x)(x∈R)是奇函数,其部分图象如图所示,则在(-2,0)上与函数
f(x)的单调性相同的是(  )
A.y=x2+1B.y=log2|x|
C.$y=\left\{\begin{array}{l}{e^x}(x≥0)\\{e^{-x}}(x<0)\end{array}\right.$D.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若对任意正数x,不等式$\frac{1}{{x}^{2}+1}$≤$\frac{a}{x}$恒成立,则实数a的最小值为(  )
A.1B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案