精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=|x+a|+|x+1|+a.
(Ⅰ)当a=1时,求不等式f(x)>5的解集;
(Ⅱ)若存在x∈[-2,-1],使f(x)≤|x-2|成立,求实数a的取值范围.

分析 (Ⅰ)当a=1时,不等式f(x)>5,即|x+1|>2,由此求得不等式的解集.
(Ⅱ)当x∈[-2,-1]时,f(x)≤|x-2|等价于|x+a|≤3-a,等价于$\left\{\begin{array}{l}{3-a≥0}\\{{(x+a)}^{2}{≤(3-a)}^{2}}\end{array}\right.$,等价于2a≤(3-x)max=5,由此求得a的范围.

解答 解:(Ⅰ)当a=1时,不等式f(x)>5,即|x+1|>2,∴x+1>2或 x+1<-2,
求得x<-3 或x>1,故不等式的解集为{x|x<-3 或x>1}.
(Ⅱ)当x∈[-2,-1],有 x+1≤0,x-2<0,故f(x)≤|x-2|等价于|x+a|≤3-a,
等价于$\left\{\begin{array}{l}{3-a≥0}\\{{(x+a)}^{2}{≤(3-a)}^{2}}\end{array}\right.$,等价于$\left\{\begin{array}{l}{a≤3}\\{(x+3)(x+2a-3)≤0}\end{array}\right.$,等价于$\left\{\begin{array}{l}{a≤3}\\{2a≤3-x}\end{array}\right.$,
∴2a≤(3-x)max=5,即 a≤$\frac{5}{2}$.

点评 本题主要考查绝对值不等式的解法,函数的能成立问题,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.数列{an}的前n项和为Sn,Sn=2n-n,等差数列{bn}的各项为正实数,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3-1成等比数列.
(I)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an•bn,当n≥2时求数列{cn}的前n项和An

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设l,m是两条不同的直线,a是一个平面,则下列说法正确的是(  )
A.若l⊥m,m?,则l⊥aB.若l⊥a,l∥m,则m⊥aC.若l∥a,m?a,则l∥mD.若l∥a,m∥a,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若实数x,y满足约束条件$\left\{\begin{array}{l}x+y≤4\\ x-2y-4≤0\\ x≥1\end{array}\right.$,则点P(x,y)落在圆(x-1)2+(y-3)2=4内的概率为(  )
A.$\frac{π}{27}$B.$\frac{2π}{27}$C.$\frac{π}{9}$D.$\frac{2π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若对任意非负实数x都有$({x-m})•{e^{-x}}-\sqrt{x}<0$,则实数m的取值范围为(  )
A.(0,+∞)B.(-∞,0)C.$(-∞,-\frac{1}{e})$D.$(-\frac{1}{e},e)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知函数f(x)=2cos(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的最小正周期为万,点($\frac{5π}{24}$,0)为它的图象的一个对称中心.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC,a,b,c分别为角A,B,C的对应边,若f(-$\frac{A}{2}$)=$\sqrt{2}$,a=3,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=$\left\{\begin{array}{l}\frac{x}{x-2}+k{x^2},x≤0\\ lgx,x>0\end{array}$有且只有2个不同零点,则实数k的取值范围是k≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若随机变量X~N(1,4),P(x≤0)=m,则P(0<x<2)1-2m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:在△ABC中,若A>B,则$\frac{co{s}^{2}B}{co{s}^{2}A}$>1;命题q:?x∈(0,+∞),$\frac{1}{{x}^{2}}$+$\frac{1}{x}$≥2,在命题(1)p∧q;(2)p∨q;(3)(¬p)∨q;(4)p∧(¬q)中,真命题是(  )
A.(1)(3)B.(2)(4)C.(1)(4)D.(2)(3)

查看答案和解析>>

同步练习册答案