精英家教网 > 高中数学 > 题目详情
已知tanα,tαnβ是方程x2-3x-3=0的两个根,求sin2(α+β)-3sin(α+β)cos(α+β)-3cos2(α+β)的值.
考点:两角和与差的正切函数,三角函数的化简求值
专题:三角函数的求值
分析:利用韦达定理求出tanα+tαnβ,tanαtαnβ,推出tan(α+β),然后化简所求表达式为正切函数的形式,求解即可.
解答: 解:tanα,tαnβ是方程x2-3x-3=0的两个根,
∴tanα+tαnβ=3,tanαtαnβ=-3,
∴tan(α+β)=
tanα+tαnβ
1-tanαtαnβ
=
3
4

则sin2(α+β)-3sin(α+β)cos(α+β)-3cos2(α+β)
=
sin2(α+β)-3sin(α+β)cos(α+β)-3cos2(α+β)
sin2(α+β)+cos2(α+β)

=
tan2(α+β)-3tan(α+β)-3
tan2(α+β)+1 

=
9
16
-3×
3
4
-3
9
16
+1

=-3.
点评:本题考查两角和与差的三角函数,韦达定理的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)试判断函数f(x)=log
1
2
(x-1)
是否为(3,+∞)上的周期为1的2级类增周期函数?并说明理由;
(2)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(3)下面两个问题可以任选一个问题作答,问题(Ⅰ)6分,问题(Ⅱ)8分,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围.
(Ⅱ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(ω>0,|φ|<
π
2
)的图象的一部分如图所示:
(1)求f(x)的表达式;
(2)求f(x)的单调增区间;
(3)求f(x)的对称轴方程与对称中心
(4)求使y≤0的x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆的一个焦点F为圆心作一个圆,使该圆过椭圆的中心O并且与椭圆交于M,N两点,如果|MF|=|MO|,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x-
π
6
)+cosx(x∈R).
(1)求函数f(x)的最小正周期;
(2)f(α)=-
1
3
,α∈(-
π
2
,0),求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(x+
π
6
)=
1
4
,则sin(
5
6
π
-x)+cos(
π
3
-x)值为(  )
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,已知向量
m
=(sinB,sinA-2sinC),
n
=(cosA-2cosC,cosB),且
m
n

(1)求
sinC
sinA
的值;
(2)若∠C=∠A+
π
3
,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(sinx+cosx)2-2
3
cos2x+
3

(1)将f(x)的图象向左平移m(m>0)个单位后,得到偶函数g(x)的图象,求m的最小值;
(2)在区间[0,π]上,求满足f(x)≤2的x的取值集合M.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,E、F分别是AC、PB的中点.
(1)求证:EF∥平面PCD;
(2)求证:平面PBD⊥平面PAC.

查看答案和解析>>

同步练习册答案