精英家教网 > 高中数学 > 题目详情
3.函数f(x)=log2(x2+2),$x∈[{-\sqrt{2},\;\sqrt{6}}]$的值域为(  )
A.[2,3]B.[1,3]C.[4,8]D.[2,8]

分析 直接由x的范围求出真数的范围,再由对数函数的单调性得答案.

解答 解:∵$x∈[{-\sqrt{2},\;\sqrt{6}}]$,∴x2+2∈[2,8],
则log22≤log2(x2+2)≤log28,
∴1$≤f(x)=lo{g}_{2}({x}^{2}+2)≤3$.
故选:B.

点评 本题考查了函数值域的求法,考查了对数函数的单调性,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设f(x)=$\left\{\begin{array}{l}{x^t},x<2\\ 1o{g_t}({x^2}+7),x≥2\end{array}$,则$f(\sqrt{2})=4$,则f(3)=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知m,n都是非零实数,则“m=n”是“m2=n2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.执行如图所示的程序框图,当输入n=50时,则输出的i的值等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x>0,y>0且x+y=2,则$\frac{1}{{x}^{2}}$+$\frac{1}{{y}^{2}}$+$\frac{1}{xy}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.二项式(x+$\frac{1}{\root{3}{x}}$)4的展开式中常数项为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a、b、c分别是△ABC的三个内角A、B、C的对边,若△ABC面积为$\frac{\sqrt{3}}{2}$,c=2,A=60°,求a,b及角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系中,$\overrightarrow{i}$,$\overrightarrow{j}$分别是与x,y轴正方向同向的单位向量,平面内三点A,B,C满足,$\overrightarrow{AB}$=$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow{AC}$=3$\overrightarrow{i}$+m$\overrightarrow{j}$.若A,B,C三点构成以∠B为直角的直角三角形,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且$\sqrt{3}$b=2csinB.
(1)求∠C的大小;
(2)若a=5,b=8,求$\overrightarrow{BA}$•$\overrightarrow{BC}$的值.

查看答案和解析>>

同步练习册答案