精英家教网 > 高中数学 > 题目详情
13.设f(x)=$\left\{\begin{array}{l}{x^t},x<2\\ 1o{g_t}({x^2}+7),x≥2\end{array}$,则$f(\sqrt{2})=4$,则f(3)=(  )
A.2B.4C.6D.8

分析 直接利用分段函数,求出t,然后求解函数的零点即可.

解答 解:f(x)=$\left\{\begin{array}{l}{x^t},x<2\\ 1o{g_t}({x^2}+7),x≥2\end{array}$,$f(\sqrt{2})=4$,
可得${(\sqrt{2})}^{t}=4$,解得t=4,
∴f(3)=log4(9+7)=2.
故选:A.

点评 本题考查分段函数的应用,函数值的求法,函数的零点求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}}\right.(α为参数)$,直线l的参数方程为$\left\{{\begin{array}{l}{x=\frac{3}{5}t}\\{y=4+\frac{4}{5}t}\end{array}(t为参数)}\right.$.以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的直角坐标方程和直线l的极坐标方程;
(2)若P(x,y)为曲线C上的动点,求点P到直线l的距离d的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市一所高中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].

(Ⅰ)求直方图中x的值;     
(Ⅱ)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1200名,请估计新生中有多少名学生可以申请住宿;     
(Ⅲ)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a∈R,函数f(x)=x2-a|x-1|.
(Ⅰ)当a=1时,求函数f(x)的最小值;
(Ⅱ)讨论y=f(x)的图象与y=|x-a|的图象的公共点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.执行如图所示的程序框图,如果输入的t∈[-2,2],则输出的S的取值范围是[-3,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足$f'({x_1})=\frac{f(b)-f(a)}{b-a}$,$f'({x_2})=\frac{f(b)-f(a)}{b-a}$,则称函数f(x)是[a,b]上的“双中值函数”.已知函数f(x)=x3-x2+a是[0,a]上的“双中值函数”,则实数a的取值范围是(  )
A.$(\frac{1}{3},\frac{1}{2})$B.($\frac{3}{2},3$)C.($\frac{1}{2}$,1)D.($\frac{1}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,直线l的方程为$\left\{\begin{array}{l}x=2+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数),以原点O为极点,Ox轴为极轴,取相同的单位长度,建立极坐标系,曲线犆的方程为ρ=4cosθ.
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)设点A(2+2cosα,2sinα),$B(5\sqrt{2}+\frac{{\sqrt{2}}}{2}t,2-\frac{{\sqrt{2}}}{2}t)$,求|AB|的最小值.(其中α?t为参数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若1<a<4,1<b<2,则$\frac{a}{b}$的取值范围为(  )
A.(1,2)B.($\frac{1}{2}$,2)C.(2,4)D.($\frac{1}{2}$,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=log2(x2+2),$x∈[{-\sqrt{2},\;\sqrt{6}}]$的值域为(  )
A.[2,3]B.[1,3]C.[4,8]D.[2,8]

查看答案和解析>>

同步练习册答案