精英家教网 > 高中数学 > 题目详情
已知A(1,3),B(3,x),若向量
a
=(-2,x)与
AB
垂直,则x=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用向量垂直与数量积的关系即可得出.
解答: 解:
AB
=(3,x)-(1,3)=(2,x-3),
∵向量
a
=(-2,x)与
AB
垂直,
a
AB
=-4+x(x-3)=0,
化为x2-3x-4=0,解得x=-1或4.
故答案为:-1或4.
点评:本题考查了向量垂直与数量积的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在二项式(x-
1
x
5的展开式中,含x3的项的系数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱锥S-ABC底面边长和高都是
3
,E是边BC的中点,动点P在三棱锥表面上运动,并且总保持
PE
AC
=0
,则动点P的轨迹的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式-2≤x2+ax+b≤1(a≠0)的解集中恰有一个元素,则b+
1
a2
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知棱长为1的正方体中ABCD-A1B1C1D1中,P,Q是面对角线A1C1上的两个不同动点,给出以下判断:
①存在P,Q两点,使BP⊥DQ;
②存在P,Q两点,使BP,DQ与直线AD成30°角;
③若PQ=1,则四面体BDPQ的体积一定是定值;
④若PQ=1,则四面体BDPQ的表面积一定是定值;
⑤若PQ=1,则四面体BDPQ在该正方体六个面上的正投影的面积的和为定值.
其中真命题的是
 
(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=2,|
b
|=1,其夹角为120°.若对向量满足(
m
-
a
)•(
m
-
b
)=0,则|
m
|的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(α+β)=
3
5
,sin(α-β)=
1
5
,则
tanα
tanβ
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ(如图所示),那么点P的轨迹是(  )
A、圆B、椭圆C、双曲线D、抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,其中“正视图”是一个边长为2的正方形,“俯视图”是一个正三角形,则这个三视图中“侧视图”的面积为(  )
A、
3
2
B、
3
C、2
3
D、4

查看答案和解析>>

同步练习册答案