精英家教网 > 高中数学 > 题目详情
6.关于x的方程( k-2 )x2-( 3k+6 )x+6k=0有两个负根,则k的取值范围是$[{-\frac{2}{5},0})$.

分析 利用方程的根与系数之间的关系进行转化列出关于k的不等式,通过求解不等式确定出k的取值范围,注意进行等价转化.

解答 解:方程( k-2 )x2-( 3k+6 )x+6k=0有两个负根?$\left\{\begin{array}{l}{\frac{3k+6}{k-2}<0}\\{\frac{6k}{k-2}>0}\\{(3k+6)^{2}-24k(k-2)≥0}\end{array}\right.$,
因此得出k的取值范围是$[{-\frac{2}{5},0})$.
故答案为$[{-\frac{2}{5},0})$.

点评 本题考查一元二次方程方程根与系数的关系,考查韦达定理的应用,关键要列出关于字母k的取值范围,通过求解不等式组确定出所求的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3-3x,
(1)过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程;
(2)若关于x的方程f(x)-m=0有三个不同的实数根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设实数x,y满足$\left\{{\begin{array}{l}{x+y-4≤0}\\{x-y≥0}\\{y≥-1}\end{array}}\right.$,则z=2x+y的最大值与最小值的和6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了废物利用,准备把半径为2,圆心角为$\frac{π}{3}$的扇形铁片余料剪成如图所示的内接矩形ABCD.试用图中α表出内接矩形ABCD的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在直角梯形ABCD中,AB∥CD,DA⊥AB,2CD=AB=AD,$3\overrightarrow{DE}=\overrightarrow{DC}$,F在AE上,若$\overrightarrow{BF}⊥\overrightarrow{AE}$,$\overrightarrow{BF}=x\overrightarrow{AB}+y\overrightarrow{AD}$,则x+y=-$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)解关于x的方程loga(3x-1)=loga(x-1)+loga(3+x),(a>0且a≠1);
(2)求值:lg5+lg2-(-$\frac{1}{3}}$)-2+(${\sqrt{2}-1}$)0+log28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={y|y=log2x,x>2},$B=\{x|y=\sqrt{x-1}\}$,则(  )
A.A⊆BB.A∪B=AC.A∩B=∅D.A∩∁RB≠∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.a>0,b>0,且a,b互不相等$\frac{a+b}{2}$,$\frac{2ab}{a+b}$,$\sqrt{\frac{{{a^2}+{b^2}}}{2}}$,$\sqrt{ab}$;则它们大小关系是$\frac{2ab}{a+b}$<$\sqrt{ab}$<$\frac{a+b}{2}$<$\sqrt{\frac{{{a^2}+{b^2}}}{2}}$.(用”<”号连接.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如表.
年龄(单位:岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数51012721
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面2×2列联表,并判断有多大的把握认为“使用微信交流”的态度与人的年龄有关?
年龄低于45岁的人数年龄不低于45岁的人数合计
不赞成31013
赞成271037
合计302050
(2)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人赞成“使用微信交流”的概率.
下面临界值表供参考:
P(X2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

同步练习册答案