精英家教网 > 高中数学 > 题目详情
17.设实数x,y满足$\left\{{\begin{array}{l}{x+y-4≤0}\\{x-y≥0}\\{y≥-1}\end{array}}\right.$,则z=2x+y的最大值与最小值的和6.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合进行求解即可.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x+y-4=0}\\{y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$,即C(5,-1),
代入目标函数z=2x+y得z=2×5-1=9.
即目标函数z=2x+y的最大值为9.
当直线y=-2x+z经过点B时,直线y=-2x+z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{x-y=0}\\{y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$,即B(-1,-1),
代入目标函数z=2x+y得z=-1×2-1=-3.
即目标函数z=2x+y的最小值为-3.
则最大值与最小值的和为9-3=6,
故答案为:6.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知:函数f(x)=sinx-cosx,且f'(x)=2f(x),则$\frac{{1+{{sin}^2}x}}{{{{cos}^2}x-sin2x}}$=(  )
A.$-\frac{19}{5}$B.$\frac{19}{5}$C.$\frac{11}{3}$D.$-\frac{11}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式x+y-1>0表示的区域在直线x+y-1=0的(  )
A.左上方B.左下方C.右上方D.右下方

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$=(2$\sqrt{3}$sinx,sinx+cosx),$\overrightarrow{b}$=(cosx,sinx-cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,cosA=$\frac{2b-a}{2c}$,若f(A)-m>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xoy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,半圆C的极坐标方程为$ρ=2sinθ,θ∈[{0,\frac{π}{2}}]$.
(1)求C的参数方程;
(2)设点D在C上,C在D处的切线与直线$l:x-\sqrt{3}y-2=0$垂直,根据(1)中的参数方程,确定点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在正方体ABCD-A1B1C1D1中,已知E为棱CC1上的动点.
(1)求证:A1E⊥BD;
(2)是否存在这样的E点,使得平面A1BD⊥平面EBD?若存在,请找出这样的E点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点A(x1,y1),B(x2,y2)是函数y=sinx(-π<x<0)上的两个不同点,且x1<x2,则对于下列四个不等式:
①$\frac{{sin{x_1}}}{x_1}<\frac{{sin{x_2}}}{x_2}$;
②sinx1<sinx2
③$\frac{1}{2}({sin{x_1}+sin{x_2}})>sin\frac{{{x_1}+{x_2}}}{2}$;
④$sin\frac{x_1}{2}>sin\frac{x_2}{2}$.
其中正确不等式的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的方程( k-2 )x2-( 3k+6 )x+6k=0有两个负根,则k的取值范围是$[{-\frac{2}{5},0})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若α,β为锐角,tan(α+β)=3,$tanβ=\frac{1}{2}$,则α的值为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

同步练习册答案