精英家教网 > 高中数学 > 题目详情
7.函数f(x)=2sin(πx+$\frac{π}{6}$)的定义域是(-$\frac{1}{3}$,$\frac{7}{3}$]直线y=kx+1与函数f(x)的图象从左至右的交点的横坐标恰好构成等差数列,则k的值是(  )
A.-$\frac{6}{5}$B.-1C.0D.6

分析 由于f(x)与直线均过点(0,1),且交点横坐标成等差数列,故直线过f(x)的对称中心.求出f(x)在y轴右侧的第一个对称中心即可求出直线的斜率k.

解答 解:∵f(0)=1,且直线y=kx+1恒过点(0,1),0为等差数列的第一项,
∵图象从左至右的交点的横坐标恰好构成等差数列,
∴直线y=kx+1必经过f(x)在y轴右侧的第一个对称中心,
令πx+$\frac{π}{6}$=kπ,解得x=-$\frac{1}{6}$+k,k∈Z.
∴f(x)在y轴右侧的第一个对称中心为($\frac{5}{6}$,0).
∴直线的斜率k=$\frac{1-0}{0-\frac{5}{6}}$=-$\frac{6}{5}$.
故选:A.

点评 本题考查了正弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知数轴上两点A,B的坐标分别是-8,-3,则$\overrightarrow{AB}$的坐标为5,|$\overrightarrow{AB}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设{an}是首项为a,公比为q(q≠1)的等比数列,求a1${C}_{n}^{0}$+a2${C}_{n}^{1}$+…+an-1${C}_{n}^{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知定义域为(1,+∞)的函数f(x)的导函数为f′(x),且f(e)=2,$\frac{f(x)}{x}$=lnx•f′(x),则不等式xf(x)<2e的解集为(1,e).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°,且|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2$\sqrt{2}$,若($\overrightarrow{a}$+λ$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则实数λ的值为(  )
A.-1B.-3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,F1,F2为双曲线C的左右焦点,且|F1F2|=2.若双曲线C的右支上存在点P,使得PF1⊥PF2.设直线PF2与y轴交于点A,且△APF1的内切圆半径为$\frac{1}{2}$,则双曲线C的离心率为(  )
A.2B.4C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下列条件求双曲线的标准方程.   
(1)已知双曲线的渐近线方程为y=±$\frac{2}{3}$x,且过点M($\frac{9}{2}$,-1);
(2)与椭圆$\frac{x^2}{49}$+$\frac{y^2}{24}$=1有公共焦点,且离心率e=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列{an}满足${a_1}=\frac{3}{2}$,${a_{n+1}}=a_n^2-{a_n}+1$,则$T=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2016}}}}$的整数部分是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.当1<m<$\frac{3}{2}$时,复数(3+i)-m(2+i)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案