| A. | -1 | B. | -3 | C. | 2 | D. | 4 |
分析 根据平面向量互相垂直时数量积为0,列出方程即可求出λ的值.
解答 解:∵向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°,|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2$\sqrt{2}$,
当($\overrightarrow{a}$+λ$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$)时,($\overrightarrow{a}$+λ$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=0,
∴2${\overrightarrow{a}}^{2}$+(2λ-1)$\overrightarrow{a}$•$\overrightarrow{b}$-λ${\overrightarrow{b}}^{2}$=0,
即2×32+(2λ-1)×3×2$\sqrt{2}$cos45°-λ•${(2\sqrt{2})}^{2}$=0,
解得λ=-3.
故选:B.
点评 本题考查了平面向量数量积的定义与应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 64 | B. | 56 | C. | 53 | D. | 51 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{6}{5}$ | B. | -1 | C. | 0 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2015}$ | B. | $\frac{1}{2016}$ | C. | -$\frac{1}{4030}$ | D. | $\frac{1}{4032}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com