精英家教网 > 高中数学 > 题目详情
7.已知点A的坐标为(0,1),直线l:x=m(y+1)与直线y=-$\frac{3}{5}$交于点F,点E∈l,且?m∈R,$\overrightarrow{AE}$•$\overrightarrow{AF}$=0.
(1)求点E的轨迹C的方程;
(2)设圆T:(x+2)2+y2=r2(r>0)与轨迹C交于点M与点N,设点P是轨迹C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.

分析 (1)由题意求得F点坐标,设E(x,y),根据向量数量积的坐标运算,即可求得点E的轨迹C的方程;
(2)由条件可知M、N两点关于x轴对称,设M(x1,y1),P(x0,y0),则N(x1,-y1),直线PM的方程为y-y0=$\frac{{y}_{1}-{y}_{0}}{{x}_{1}-{x}_{0}}$(x-x0),令y=0得点R的横坐标xR=$\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{{y}_{0}-{y}_{1}}$,同理可得点S的横坐标xS=$\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{{y}_{0}+{y}_{1}}$.由此能证明|OR|•|OS|为常数.

解答 解:(1)由题意可知:A(0,1),F($\frac{2}{5}$m,-$\frac{3}{5}$),设E(x,y),
由$\overrightarrow{AE}$=(x,y-1),$\overrightarrow{AF}$=($\frac{2}{5}$m,-$\frac{8}{5}$),
由$\overrightarrow{AE}$•$\overrightarrow{AF}$=0.则$\frac{2}{5}$mx-$\frac{8}{5}$(y-1)=0,2mx=8(y-1),
当y≠-1时,m=$\frac{x}{y+1}$,代入整理得:${y}^{2}-\frac{{x}^{2}}{4}=1$,(y≠-1),
当y=-1时,F(0,-$\frac{3}{5}$),则E(0,1),满足${y}^{2}-\frac{{x}^{2}}{4}=1$,
∴点E的轨迹C的方程${y}^{2}-\frac{{x}^{2}}{4}=1$;
(2)证明:由条件可知M、N两点关于x轴对称,
设M(x1,y1),P(x0,y0),
则N(x1,-y1),${y}_{1}^{2}-\frac{{x}_{1}^{2}}{4}=1$,${y}_{0}^{2}-\frac{{x}_{0}^{2}}{4}=1$,
所以x12=4(y12-1),x02=(y02-1).
直线PM的方程为y-y0=$\frac{{y}_{1}-{y}_{0}}{{x}_{1}-{x}_{0}}$(x-x0),
令y=0得点R的横坐标xR=$\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{{y}_{0}-{y}_{1}}$,
同理可得点S的横坐标xS=$\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{{y}_{0}+{y}_{1}}$.
于是:|OR|•|OS|=|$\frac{{x}_{1}{y}_{0}-{x}_{0}{y}_{1}}{{y}_{0}-{y}_{1}}$|•|$\frac{{x}_{1}{y}_{0}+{x}_{0}{y}_{1}}{{y}_{0}+{y}_{1}}$|=|$\frac{{x}_{1}^{2}{y}_{0}^{2}-{x}_{0}^{2}{y}_{1}^{2}}{{y}_{0}^{2}-{y}_{1}^{2}}$|,
=|$\frac{4({y}_{1}^{2}-1){y}_{0}^{2}-4({y}_{0}^{2}-1){y}_{1}^{2}}{{y}_{0}^{2}-{y}_{1}^{2}}$|=4.
所以|OR|•|OS|为常数4.

点评 本题考查双曲线的轨迹方程的求法,考查向量数量积的坐标运算,解题时要认真审题,注意双曲线定义和方程的合理运用,直线方程的合理运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sinx-cosx,则$f'(\frac{π}{3})$=(  )
A.$-\frac{1}{2}-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}+\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}+\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)若a=2,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤ax-1恒成立,求整数a的最小值.
(3)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:x1+x2≥$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l1:2x-y+2=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(  )
A.2B.$\frac{4\sqrt{5}}{5}$C.3D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某城市随机抽取一年内100天的空气质量指数(AQI)的监测数据,结果统计如表:
AQI[0,50](50,100](100,150](150,200](200,300]>300
空气质量轻度污染中度污染重度污染严重污染
天数61418272015
(1)若空气质量为严重污染则企业必须放假,试估计一年中(以360天计算)企业因为空气严重污染放假的天数;
(2)已知某企业每天的经济损失y(单位:元)与空气质量指数x的关系式为
y=$\left\{\begin{array}{l}{0,0≤x≤100}\\{4x-400,100<x≤300}\\{2000,x>300}\end{array}\right.$
1)若在本年内随机抽取一天,试估计这一天的经济损失超过400元的概率;
2)若以区间中点值计算空气质量指数,试估计一年中(以360天计算)企业因空气污染原因造成的经济损失是多少元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=5x2+$\frac{a}{x}$+$\frac{1}{4}$(x>0),g(x)=lnx+4,曲线y=g(x)在点(1,4)处的切线与曲线y=f(x)相切.
(1)求实数a的值;
(2)证明:当x≥0时,f(x)>g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.2017年厦门航空公司在调查男女乘客140人是否晕机的情况中,已知男乘客60人,其中晕机为15人,女乘客80人,其中晕机为35人.
(1)根据以上的数据建立一个列联表
(2)能否在犯错误的概率不超过0.001的前提下认为晕机与性别有关
(1)给定临界值表
P(K≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83
(2)${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.富华中学的一个文学兴趣小组中,三位同学张博源、高家铭和刘雨恒分别从莎士比亚、雨果和曹雪芹三位名家中选择了一位进行性格研究,并且他们选择的名家各不相同.三位同学一起来找图书管理员刘老师,让刘老师猜猜他们三人各自的研究对象.刘老师猜了三句话:“①张博源研究的是莎士比亚;②刘雨恒研究的肯定不是曹雪芹;③高家铭自然不会研究莎士比亚.”很可惜,刘老师的这种猜法,只猜对了一句.据此可以推知张博源、高家铭和刘雨恒分别研究的是C,A,B.(A莎士比亚、B雨果、C曹雪芹,按顺序填写字母即可.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了传承经典,促进学生课外阅读,某校从高中年级和初中年级各随机抽取100名学生进行有关对中国四大名著常识了解的竞赛.图1和图2分别是高中年级和初中年级参加竞赛的学生成绩按照[40,50),[50,60),[60,70),[70,80)分组,得到的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个学段的学生的平均成绩;
(2)规定竞赛成绩达到[75,80)为优秀,经统计初中年级有3名男同学,2名女同学达到优秀,现从上述5人中任选两人参加复试,求选中的2人恰好都为女生的概率;
(3)完成下列2×2的列联表,并回答是否有99%的把握认为“两个学段的学生对四大名著的了解有差异”?
成绩小于60分人数成绩不小于60分人数合计
初中年级
高中年级
合计
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
临界值表:
P(K2≥k00.100.050.01
k02.7063.8416.635

查看答案和解析>>

同步练习册答案