精英家教网 > 高中数学 > 题目详情
5.一种设备的价值为a元,设备维修和消耗费用第一年为b元,以后每年增加b元,用t表示设备使用的年数,且设备年平均维修、消耗费用与设备平均价值费用之和为y元,当a=450000,b=1000时,求这种设备的最佳更新年限(使用平均费用最低的t).

分析 这种设备使用了t年,年平均设备维修、消耗费用为$\frac{b+2b+…+tb}{t}$=$\frac{b}{2}$ (t+1)(元).而年平均设备价值费用为$\frac{a}{t}$(元).从而y=$\frac{b}{2}$ (t+1)+$\frac{a}{t}$,利用基本不等式,即可得出结论.

解答 解:这种设备使用了t年,年平均设备维修、消耗费用为$\frac{b+2b+…+tb}{t}$=$\frac{b}{2}$ (t+1)(元).
而年平均设备价值费用为$\frac{a}{t}$(元).
从而y=$\frac{b}{2}$ (t+1)+$\frac{a}{t}$=$\frac{b}{2}$+$\frac{bt}{2}$+$\frac{a}{t}$≥$\frac{b}{2}$+$\sqrt{2ab}$,当且仅当$\frac{bt}{2}$=$\frac{a}{t}$,即t=$\sqrt{\frac{2a}{b}}$时等号成立.
当a=450 000,b=1 000时,t=$\sqrt{\frac{2×450000}{1000}}$=30(年).
因此,这种设备的最佳更新年限为30年.

点评 本题考查利用数学知识解决实际问题,考查基本不等式的运用,考查学生的计算能力,确定函数表达式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图所示,用符号语言可表示为(  )
A.α∩β=lB.α∥β,l∈αC.l∥β,l?αD.α∥β,l?α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x|2x-a|-6.
(1)当a=0时,求满足f(x)=0的x值;
(2)当a=1时,解不等式f(x)>0;
(3)若方程f(x)=0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列命题:
①($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)②$\overrightarrow{a}$•$\overrightarrow{b}$=0?$\overrightarrow{a}$⊥$\overrightarrow{b}$;③若$\overrightarrow{a}$,$\overrightarrow{b}$是两个单位向量,则|$\overrightarrow{a}$|=|$\overrightarrow{b}$|;④若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$.
其中正确的命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某夏令营有48人,出发前要从A,B两种型号的帐篷中选择一种,A型号的帐篷比B型号少5顶,若只选A型号的,每顶帐篷住4人,则帐篷不够,每顶帐篷住5人,则有一顶帐篷没有住满,若只选B型号的,每顶帐篷住3人,则帐篷不够,每顶帐篷住4人,则有帐篷多余,设A型号的帐篷有x顶,用不等式将题目中的不等关系表示出来.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若0<a<1,0<b<1,且满足(1-a)b2+a(1-b)2+ka(1-a)≥0恒成立的k的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<$\sqrt{2}$),斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,向量$\overrightarrow{OA}$+$\overrightarrow{OB}$与向量$\overrightarrow{a}$=(2,-1)共线.
(Ⅰ)求b;
(Ⅱ)点P(x0,y0)在椭圆上移动(直线AB不过点P),且直线PA、PB分别与直线l:x=2相交,交点记为M、N,试问M、N两点的纵坐标之积是否为定值?若是,求出该定值;若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2(a+1)lnx-ax,g(x)=$\frac{1}{2}$x2-x.
(1)若函数f(x)在定义域内为单调函数,求实数a的取值范围;
(2)证明:若-1<a<7,则对于任意x1、x2∈(1,+∞),x1≠x2,有$\frac{f({x}_{1})-f({x}_{2})}{g({x}_{1})-g({x}_{2})}$>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设正数a,b满足ab+a+b-15=0
(1)求ab的最大值;
(2)求4a+b的最小值.

查看答案和解析>>

同步练习册答案