精英家教网 > 高中数学 > 题目详情
如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进.现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字.质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前进两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D).在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
(1)求质点P恰好返回到A点的概率;
(2)在质点P转一圈恰能返回到A点的所有结果中,用随机变量ξ表示点P恰能返回到A点的投掷次数,求ξ的数学期望.
(1) P=P2+P3+P4.    
(2) Eξ=2×+3×+4×
(1)由古典概型概率公式得投掷一次正方体玩具,每个数字在上底面的概率为P1.再分析质点P恰好返回到A点共有三种情况,投掷两次质点P返回到A点,有(1,3)、(3,1)、(2,2)三种结果;投掷三次质点P返回到A点,有 (1,1,2)、(1,2,1)、(2,1,1)三种结果;投掷四次质点P返回到A点,只有 (1,1,1,1).根据相互独立事件和互斥事件的概率公式求解;
(2)由(1)得随机变量ξ的值为2,3,4,分别求出对应的概率,根据期望公式计算得Eξ
(1)投掷一次正方体玩具,每个数字在上底面出现都是等可能的,其概率为P1.
只投掷一次不可能返回到A点;若投掷两次质点P就恰好能返回到A点,则上底面出现的两个数字应依次为:(1,3)、(3,1)、(2,2)三种结果,其概率为P2=()2×3=
若投掷三次质点P恰能返回到A点,则上底面出现的三个数字应依次为:(1,1,2)、(1,2,1)、(2,1,1)三种结果,其概率为P3=()3×3=
若投掷四次质点P恰能返回到A点,则上底面出现的四个数字应依次为:(1,1,1,1).其概率为P4=()4.
所以,质点P恰好返回到A点的概率为:P=P2+P3+P4.      6分
(2)由(1)知,质点P转一圈恰能返回到A点的所有结果共有以上问题中的7种情况,且ξ的可能取值为2,3,4,
则P(ξ=2)=,P(ξ=3)=,P(ξ=4)=
所以,Eξ=2×+3×+4×.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设随机变量X~B(2,p),Y~B(3,p),若P(X)=,则P(Y)=___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校的学生记者团由理科组和文科组构成,具体数据如下表所示:
组别
理科
文科
性别
男生
女生
男生
女生
人数
4
4
3
1
学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.(Ⅰ)求理科组恰好记4分的概率?(4分)
(Ⅱ)设文科男生被选出的人数为,求随机变量的分布列和数学期望.(8分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

随机抽取某厂的某种产品100件,经质检,其中有一等品63件、二等品25件、三等品10件、次品2件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为
(1)求的分布列;
(2)求1件产品的平均利润(即的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于5.13万元,则三等品率最多是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某班有名同学,一次考试后的数学成绩服从正态分布,则理论上分到 分的人数是 (     ) 
A.32B.16C.8D.20

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

随机变量X的分布列如下表,且E(X)=1.1,则D(X)=________.
X
0
1
x
P

p

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
小明购买一种叫做“买必赢”的彩票,每注售价10元,中奖的概率为2%,如果每注奖的奖金为300元,那么小明购买一注彩票的期望收益是多少元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
2011年深圳大运会,某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D
两个动作,比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。假
设每个运动员完成每个系列中的两个动作的得分是相互独立的,根据赛前训练统计数据,某
运动员完成甲系列和乙系列的情况如下表:
甲系列:
动作
K
D
得分
100
80
40
10
概率




乙系列:
动作
K
D
得分
90
50
20
0
概率




   现该运动员最后一个出场,其之前运动员的最高得分为118分。
(I)若该运动员希望获得该项目的第一名,应选择哪个系列,说明理由,并求其获得第一
名的概率;
(II)若该运动员选择乙系列,求其成绩X的分布列及其数学期望EX。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二项分布满足X~B(3,),则(X=2)=   ▲   .(用分数表示)

查看答案和解析>>

同步练习册答案