| A. | $\frac{{-\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{3\sqrt{5}}}{5}$ |
分析 由$\overrightarrow{a}⊥\overrightarrow{b}$,可得$\overrightarrow{a}•\overrightarrow{b}$=sinθ-2cosθ=0,tanθ=2.可得sinθcosθ=$\frac{sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{tanθ}{ta{n}^{2}θ+1}$.由于θ∈$(0,\frac{π}{2})$,可得sinθ+cosθ=$\sqrt{(sinθ+cosθ)^{2}}$=$\sqrt{1+2sinθcosθ}$.
解答 解:∵$\overrightarrow{a}⊥\overrightarrow{b}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=sinθ-2cosθ=0,
∴tanθ=2.
∴sinθcosθ=$\frac{sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{tanθ}{ta{n}^{2}θ+1}$=$\frac{2}{{2}^{2}+1}$=$\frac{2}{5}$.
∵θ∈$(0,\frac{π}{2})$,
∴sinθ+cosθ=$\sqrt{(sinθ+cosθ)^{2}}$=$\sqrt{1+2sinθcosθ}$=$\sqrt{1+2×\frac{2}{5}}$=$\frac{3\sqrt{5}}{5}$.
故选:D.
点评 本题考查了向量数量积运算性质、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{2}$ | B. | -$\frac{5}{12}$ | C. | -$\frac{4}{7}$ | D. | -$\frac{11}{24}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{π}}{3}$ | B. | $\frac{\sqrt{π}}{2}$ | C. | $\frac{\sqrt{3π}}{3}$ | D. | $\frac{\sqrt{3π}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com