精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)在区间[-ω,ω]上单调递增,且函数f(x)的图象关于直线x=ω对称,则ω的值为(  )
A.$\frac{\sqrt{π}}{3}$B.$\frac{\sqrt{π}}{2}$C.$\frac{\sqrt{3π}}{3}$D.$\frac{\sqrt{3π}}{2}$

分析 由两角和的正弦函数公式化简解析式可得f(x)=2sin(ωx+$\frac{π}{6}$),由2kπ-$\frac{π}{2}$≤ωx+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函数f(x)的单调递增区间,结合已知可得:-ω≥$\frac{2kπ-\frac{2π}{3}}{ω}$①,ω≤$\frac{2kπ+\frac{π}{3}}{ω}$②,k∈Z,从而解得k=0,又由ωx+$\frac{π}{6}$=kπ+$\frac{π}{2}$,可解得函数f(x)的对称轴为:x=$\frac{kπ+\frac{π}{3}}{ω}$,k∈Z,结合已知可得:ω2=$\frac{π}{3}$,从而可求ω的值.

解答 解:∵f(x)=sinωx+cosωx=2sin(ωx+$\frac{π}{6}$),
∵函数f(x)在区间(-ω,ω)内单调递增,ω>0
∴2kπ-$\frac{π}{2}$≤ωx+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函数f(x)的单调递增区间为:[$\frac{2kπ-\frac{2π}{3}}{ω}$,$\frac{2kπ+\frac{π}{3}}{ω}$],k∈Z,
∴可得:-ω≥$\frac{2kπ-\frac{2π}{3}}{ω}$①,ω≤$\frac{2kπ+\frac{π}{3}}{ω}$②,k∈Z,
∴解得:0<ω2≤$\frac{π}{3}$+2kπ且0<ω2≤-2kπ+$\frac{2π}{3}$,k∈Z,
解得:-$\frac{1}{6}$<k<$\frac{1}{3}$,k∈Z,
∴可解得:k=0,
又∵由ωx+$\frac{π}{6}$=kπ+$\frac{π}{2}$,可解得函数f(x)的对称轴为:x=$\frac{kπ+\frac{π}{3}}{ω}$,k∈Z,
∴由函数y=f(x)的图象关于直线x=ω对称,可得:ω2=$\frac{π}{3}$,可解得:ω=$\frac{\sqrt{3π}}{3}$.
故选:C.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,正确确定k的值是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(sinθ,-2)与$\overrightarrow{b}$=(1,cosθ)互相垂直,其中θ∈$(0,\frac{π}{2})$,则sinθ+cosθ等于(  )
A.$\frac{{-\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{3\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若a、b、x、y∈R+,且a+b=1,证明:ax2+by2≥(ax+by)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若a2+b2=1,则-$\frac{1}{2}$≤ab≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的个数是(  )
①总体个数较少,抽取样本较少时宜采用简单的随即抽样;
②总体各层次差异较大时宜采用分层抽样;
③某工厂在其生产流水线上每隔10取一件产品检验,这种抽样方法叫分层抽样.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$|\overrightarrow{OA}|=1$,$|\overrightarrow{OB}|=4$,$\overrightarrow{OA}•\overrightarrow{OB}=2$,$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,则△ABC的面积是.
A.1B.2C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A={y|y=x2,x∈R},B={x|x>a},若x∈B是x∈A的充分非必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f($\frac{2}{x}$+1)=$\sqrt{x}$.则f(x)=$\frac{\sqrt{2x-2}}{x-1}$,x≠1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x2-(a+3)x+a2=0},B={x|x2-x=0},是否存在实数a,使A,B同时满足下列三个条件:①A≠B;②A∪B=B;③∅?(A∩B)?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案