精英家教网 > 高中数学 > 题目详情
19.在空间四边形ABCD中,AB=AD,CB=CD.E,F,G,H分别是AB,BC,CD,DA的中点,则下列命题中正确的是(  )
A.E,F,G,H四点不共面B.EFGH是梯形
C.EG⊥FHD.EFGH是矩形

分析 根据中位线的性质判断EFGH是平行四边形,根据等腰三角形的性质判断垂直关系即可得到结论.

解答 解:∵E,F,G,H分别是AB,BC,CD,DA的中点,
∴FG∥BD,EH∥BD,
且FG=$\frac{1}{2}$BD,EH=$\frac{1}{2}$/BD,
即EH∥FG,EH=FG,
即EFGH是平行四边形.
取BD的中点P,则AP⊥BD,CP⊥BD,
∴BD⊥面APC,BD⊥AC.
即EFGH是矩形.
故选:D.

点评 本题考查空间中直线与干线之间的位置关系,解题的关键是掌握空间中直线与直线之间位置关系的判断方法,本题涉及到线线平行的证明,中位线的性质等要注意这些知识在应用时的转化方式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在自然数列1,2,3,…,n中,任取k个元素位置保持不动,将其余n-k个元素变动位置,得到不同的新数列.由此产生的不同新数列的个数记为Pn(k).
(1)求P3(1)
(2)求$\sum_{k=0}^{4}$P4(k);
(3)证明$\sum_{k=0}^{n}$kPn(k)=n$\sum_{k=0}^{n-1}$Pn-1(k),并求出$\sum_{k=0}^{n}$kPn(k)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=(1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$-$\frac{x^4}{4}$+…-$\frac{{{x^{2012}}}}{2012}$+$\frac{{{x^{2013}}}}{2013}$-$\frac{{{x^{2014}}}}{2014}$+$\frac{{{x^{2015}}}}{2015}}$)cos2x在区间[-3,3]上零点的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“α为第一象限角”是“$\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$≥2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.PM2.5是悬浮在空气中的直径小于或等于2.5微米的颗粒物,也成为入肺颗粒物,根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上的空气质量为超标.甲、乙两景区3月2日~3月21日20天内的PM2.5日均值如茎叶图所示:
(Ⅰ)将20天的PM2.5日均值分为五组[0,10),[10,20),[20,30),[30,40),[40,50]试作甲的频率分布直方图,并计算乙景区20天日均值的平均值;
(Ⅱ)已知甲、乙两景区3月6日~9日的PM2.5日均值依次为8、10、15、27;10、13、8、14,某游客欲在相邻的两天分游览甲、乙景区各一天,试求这两天的日均值的差小于5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(1+x)-$\frac{ax}{x+a}$.
(Ⅰ)证明:当a=1,x>0时,f(x)>0;
(Ⅱ)若a>1,讨论f(x)在(0,+∞)上的单调性;
(Ⅲ)设n∈N*,比较$\frac{1}{2}+\frac{2}{3}+…+\frac{n}{n+1}$与n-ln(1+n)的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线的斜率为2,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=sinα(sinα-cosα)(α∈[-$\frac{π}{2}$,0])的最大值为$\frac{1}{2}+\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{{x}^{2}-2x,x≤0}\end{array}\right.$的零点个数为2.

查看答案和解析>>

同步练习册答案