精英家教网 > 高中数学 > 题目详情

已知函数f(x)=a(x-1)2+lnx.a∈R.
(Ⅰ)当数学公式时,求函数y=f(x)的单调区间;
(Ⅱ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在不等式组数学公式所表示的区域内,求a的取值范围.

解:(Ⅰ)(x>0),

当0<x<2时,f'(x)>0,f(x)在(0,2)上单调递增;
当x>2时,f'(x)<0,f(x)在(0,2)上单调递减;
所以函数的单调递增区间是(0,2),单调递减区间是(2,+∞).
(Ⅱ)由题意得a(x-1)2+lnx≤x-1对x∈[1,+∞)恒成立,
设g(x)=a(x-1)2+lnx-x+1,x∈[1,+∞),则有g(x)max≤0,x∈[1,+∞)成立.
求导得
①当a≤0时,若x>1,则g'(x)<0,所以g(x)在[1,+∞)单调递减,g(x)max=g(1)=0≤0成立,得a≤0;
②当时,,g(x)在x∈[1,+∞)上单调递增,所以存在x>1,使g(x)>g(1)=0,此时不成立;
③当
则存在,有,所以不成立;
综上得a≤0.
分析:(Ⅰ)a=-时求出f′(x),在定义域内解不等式f'(x)>0,f'(x)<0即可;
(Ⅱ)由题意得a(x-1)2+lnx≤x-1对x∈[1,+∞)恒成立,设g(x)=a(x-1)2+lnx-x+1,x∈[1,+∞),则问题等价于g(x)max≤0,x∈[1,+∞)成立,求导数g′(x),按照a的范围分类进行讨论可得g(x)的单调性,根据单调性可得g(x)的最大值,由最大值情况即可求得a的范围;
点评:本题考查利用导数研究函数的单调性、最值,考查恒成立问题,考查分类讨论思想,恒成立问题往往转化为函数最值解决,解决(Ⅱ)问的关键是正确理解题意并能合理进行转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案