分析 (1)利用有序实数对表示基本事件,由古典概型公式解答;
(2)表示a,b满足的区域,求出面积,利用几何概型解答.
解答
解:(1)由题意,知基本事件共有9个,可用有序实数对表示为(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),
其中第一个表示a的取值,第二个表示b的取值.
由方程${x^2}+ax-\frac{b^2}{4}+1=0$的$△={a^2}-4(-\frac{b^2}{4}+1)={a^2}+{b^2}-4≥0$,
可得,a2+b2≥4,
所以方程${x^2}+ax-\frac{b^2}{4}+1=0$有实根包含7个基本事件,
即(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).
所以,此时方程${x^2}+ax-\frac{b^2}{4}+1=0$有实根的概率为$\frac{7}{9}$.
(2)a,b的取值所构成的区域如图所示,其中0≤a≤3,0≤b≤2,
∴构成“方程${x^2}+ax-\frac{b^2}{4}+1=0$有实根”这一事件的区域为{(a,b)|a2+b2≥4,0≤a≤3,0≤b≤2}(图中阴影部分)
∴此时所求概率为$\frac{{2×3-\frac{1}{4}×π×{2^2}}}{2×3}=1-\frac{π}{6}$.
点评 本题考查了古典概型、几何概型的概率公式的运用;关键是明确事件的属性,正确选择概率模型.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 2 | 3 | 4 | 5 |
| y | 26 | 39 | 49 | 54 |
| A. | 9.4 | B. | 9.5 | C. | 9.6 | D. | 9.7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=3sin2x | B. | y=3sin$\frac{1}{2}$x | C. | $y=\frac{1}{3}sin2x$ | D. | $y=\frac{1}{3}sin\frac{1}{2}x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com