精英家教网 > 高中数学 > 题目详情
当x∈[-1,1]时,-2x2+2ax+4≥0恒成立,求a的范围.
考点:函数恒成立问题
专题:综合题,函数的性质及应用
分析:讨论x=0的情况,再讨论x∈(0,1]的情况,分离参数,构造函数,利用函数的单调性即可求得实数a的取值范围.
解答: 解:若x=0,可得4≥0,恒成立,a可以取任意值;
若x∈(0,1]时,-2x2+2ax+4≥0,可得a≥x-
2
x
,∴a≥-1(x=1时等号成立);
若x∈[-1,0)时,-2x2+2ax+4≥0,可得a≤x-
2
x
,∴a≤1
∴-1≤a≤1.
点评:本题考查不等式恒成立问题,解题的关键是分离参数,构造函数,利用函数的单调性求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过抛物线y2=12x焦点的一条直线与抛物线相交于A,B两点,若|AB|=14,则线段AB的中点到y轴的距离等于(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于(  )
A、112B、114
C、116D、120

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在斜三棱柱ABC-A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(Ⅰ)求证:AB1⊥CC1
(Ⅱ)若AB1=
6
,求二面角C-AB1-A1

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一数学兴趣小组开展竞赛前摸底考试.甲、乙两人参加了5次考试,成绩如下:
第一次第二次第三次第四次第五次
甲的成绩8287868090
乙的成绩7590917495
(Ⅰ)若从甲、乙两人中选出1人参加比赛,你认为选谁合适?写出你认为合适的人选并说明理由;
(Ⅱ)若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”.由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图1所示的多面体ABCDEF中,四边形ABCD是正方形,ED⊥平面ABCD,ED∥FC,ED=
1
2
FC,M是AF的中点.
(Ⅰ)求证:EM∥平面ABCD;
(Ⅱ)求证:平面AEF⊥平面FAC;
(Ⅲ)若图2是该多面体的侧视图,求四棱锥A-CDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数f(x)中,满足“对任意x1,x2∈(-∞,0),当x1<x2时,都有f(x1)<f(x2)”的函数是(  )
A、f(x)=-x+1
B、f(x)=x2-1
C、f(x)=2x
D、f(x)=ln(-x)

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式an=
n2
n2+1

(1)0.98是否为它的项?
(2)判断此数列的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥ABCD-A1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2,BC=CD=1,顶角D1在底面ABCD内的射影恰好为点C.
(1)求证:AD1⊥BC;
(2)在AB上是否存在点M,使得C1M∥平面ADD1A1?若存在,确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案