精英家教网 > 高中数学 > 题目详情
9.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F(c,0)关于直线y=$\frac{b}{c}$x的对称点Q在椭圆上,则椭圆的离心率是$\frac{\sqrt{2}}{2}$.

分析 设出Q的坐标,利用对称知识,集合椭圆方程推出椭圆几何量之间的关系,然后求解离心率即可.

解答 解:设Q(m,n),由题意可得$\left\{\begin{array}{l}\frac{n}{m-c}=-\frac{c}{b}…①\\ \frac{n}{2}=\frac{b}{c}•\frac{m+c}{2}…②\\ \frac{{m}^{2}}{{a}^{2}}+\frac{{n}^{2}}{{b}^{2}}=1…③\end{array}\right.$,
由①②可得:m=$\frac{{c}^{3}-{cb}^{2}}{{a}^{2}}$,n=$\frac{2{bc}^{2}}{{a}^{2}}$,代入③可得:$\frac{{(\frac{{c}^{3}-{cb}^{2}}{{a}^{2}})}^{2}}{{a}^{2}}+\frac{{(\frac{2{bc}^{2}}{{a}^{2}})}^{2}}{{b}^{2}}=1$,
可得,4e6+e2-1=0.
即4e6-2e4+2e4-e2+2e2-1=0,
可得(2e2-1)(2e4+e2+1)=0
解得e=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题考查椭圆的方程简单性质的应用,考查对称知识以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,且∠AOB=$\frac{π}{3}$,动点C满足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$.给出以下命题:
①若x+y=1,则点C的轨迹为直线;
②若|x|+|y|=1,则点C的轨迹为矩形;
③若xy=1,则点C的轨迹为抛物线;
④若$\frac{x}{y}$=1,则点C的轨迹为直线;
⑤若x2+y2+xy=1,则点C的轨迹为圆.
以上命题正确的为①②⑤(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}的前n项和为Sn,已知a1=$\frac{1}{2}$,Sn=n2an-n(n-1),n=1,2,…,求Sn关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,0≤x<1}\\{lnx,x≥1}\end{array}\right.$,若对任意的x∈[a,a+1],不等式f(2x)≤f(x+a)恒成立,则实数a的最大值为(  )
A.-1B.-$\frac{2}{3}$C.-$\frac{1}{2}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,$\stackrel{k个}{\overbrace{(-1)^{k-1}k,…,(-1)^{k-1}k}}$,…,即当$\frac{(k-1)k}{2}$<n≤$\frac{k(k+1)}{2}$(k∈N*)时,${a}_{n}={(-1)}^{k-1}k$.记Sn=a1+a2+…+an(n∈N?).对于l∈N?,定义集合Pl=﹛n|Sn为an的整数倍,n∈N?,且1≤n≤l}
(1)求P11中元素个数;
(2)求集合P2000中元素个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.
(1)求t1与f(t1)的值;
(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高二上文周末检测三数学试卷(解析版) 题型:填空题

一个等差数列的前三项为:.则这个数列的通项公式为_______.

查看答案和解析>>

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(文)试卷(解析版) 题型:解答题

已知函数

(Ⅰ)若对其定义域内任意成立,求值;

(Ⅱ)当时,求在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左顶点为A,与x轴平行的直线与椭圆E交于B、C两点,过B、C两点且分别与直线AB、AC垂直的直线相交于点D.已知椭圆E的离心率为$\frac{{\sqrt{5}}}{3}$,右焦点到右准线的距离为$\frac{{4\sqrt{5}}}{5}$.
(1)求椭圆E的标准方程;
(2)证明点D在一条定直线上运动,并求出该直线的方程;
(3)求△BCD面积的最大值.

查看答案和解析>>

同步练习册答案