·ÖÎö £¨1£©ÀûÓÃ$\frac{c}{a}=\frac{{\sqrt{5}}}{3}$£¬$\frac{a^2}{c}-c=\frac{{4\sqrt{5}}}{5}$£¬¼ÆËã¼´¿É£»
£¨2£©Í¨¹ýÉèB¡¢Cµã×ø±ê¡¢Ð´³öÖ±ÏßAB¡¢AC¡¢BD¡¢CDµÄбÂÊ£¬ÁªÁ¢Ö±ÏßBD¡¢CDµÄ·½³Ì£¬¼ÆËã¼´¿É£»
£¨3£©Í¨¹ý¼ÆËã¿ÉµÃµãDµÄ×Ý×ø±ê£¬½ø¶ø¿ÉµÃµãDµ½Ö±ÏßBCµÄ¾àÀ룬ÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½¼°»ù±¾²»µÈʽ¼´µÃ½áÂÛ£®
½â´ð £¨1£©½â£ºÓÉÌâÒâµÃ$\frac{c}{a}=\frac{{\sqrt{5}}}{3}$£¬$\frac{a^2}{c}-c=\frac{{4\sqrt{5}}}{5}$£¬
½âµÃ$a=3£¬c=\sqrt{5}$£¬
¡àb2=a2-c2=4£¬
¡àÍÖÔ²EµÄ±ê×¼·½³ÌΪ$\frac{x^2}{9}+\frac{y^2}{4}=1$£®
£¨2£©Ö¤Ã÷£ºÉèB£¨x0£¬y0£©£¬C£¨-x0£¬y0£©£¬ÏÔȻֱÏßAB£¬AC£¬BD£¬CDµÄбÂʶ¼´æÔÚ£¬
ÉèΪk1£¬k2£¬k3£¬k4£¬Ôò${k_1}=\frac{y_0}{{{x_0}+3}}£¬{k_2}=\frac{y_0}{{-{x_0}+3}}$£¬${k_3}=-\frac{{{x_0}+3}}{y_0}£¬{k_4}=\frac{{{x_0}-3}}{y_0}$£¬
¡àÖ±ÏßBD£¬CDµÄ·½³ÌΪ£º$y=-\frac{{{x_0}+3}}{y_0}£¨x-{x_0}£©+{y_0}£¬y=\frac{{{x_0}-3}}{y_0}£¨x+{x_0}£©+{y_0}$£¬
ÏûÈ¥yµÃ£º$-\frac{{{x_0}+3}}{y_0}£¨x-{x_0}£©+{y_0}=\frac{{{x_0}-3}}{y_0}£¨x+{x_0}£©+{y_0}$£¬
»¯¼òµÃx=3£¬¹ÊµãDÔÚ¶¨Ö±Ïßx=3ÉÏÔ˶¯£®
£¨3£©½â£ºÓÉ£¨2£©µÃµãDµÄ×Ý×ø±êΪ${y_D}=\frac{{{x_0}-3}}{y_0}£¨3+{x_0}£©+{y_0}=\frac{x_0^2-9}{y_0}+{y_0}$£¬
ÓÖ¡ß$\frac{x_0^2}{9}+\frac{y_0^2}{4}=1$£¬¡à$x_0^2-9=-\frac{9y_0^2}{4}$£¬
Ôò${y_D}=\frac{{{x_0}-3}}{y_0}£¨3+{x_0}£©+{y_0}=\frac{{-\frac{9}{4}y_0^2}}{y_0}+{y_0}=-\frac{5}{4}{y_0}$£¬
¡àµãDµ½Ö±ÏßBCµÄ¾àÀëh=$|{{y_D}-{y_0}}|=|{-\frac{5}{4}{y_0}-{y_0}}|=\frac{9}{4}|{y_0}|$£¬
½«y=y0´úÈë$\frac{x^2}{9}+\frac{y^2}{4}=1$£¬µÃ$x=¡À3\sqrt{1-\frac{y_0^2}{4}}$£¬
¡à¡÷BCDÃæ»ý${S_{¡÷ABC}}=\frac{1}{2}BC•h=\frac{1}{2}¡Á6\sqrt{1-\frac{y_0^2}{4}}•\frac{9}{4}|{y_0}|$
=$\frac{27}{2}\sqrt{1-\frac{y_0^2}{4}}•\frac{1}{2}|{y_0}|¡Ü\frac{27}{2}•\frac{{1-\frac{y_0^2}{4}+\frac{y_0^2}{4}}}{2}=\frac{27}{4}$£¬
µ±ÇÒ½öµ±$1-\frac{y_0^2}{4}=\frac{y_0^2}{4}$£¬¼´${y_0}=¡À\sqrt{2}$ʱµÈºÅ³ÉÁ¢£¬
¹Ê${y_0}=¡À\sqrt{2}$ʱ£¬¡÷BCDÃæ»ýµÄ×î´óֵΪ$\frac{27}{4}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¶¨Òå¼°Æä±ê×¼·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ¡¢Èý½ÇÐεÄÃæ»ý¼ÆËãµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìÁÉÄþׯºÓÊиßÈý9ÔÂÔ¿¼Êýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ
ij¼¸ºÎÌåÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¸©ÊÓͼÖл¡ÏßÊÇ
Ô²»¡£©£¨ £©
![]()
A£®
B£®
C£®
D£®![]()
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìÁÉÄþׯºÓÊиßÈý9ÔÂÔ¿¼Êýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ
ÒÑ֪żº¯Êý
ÔÚ
ÉÏÊÇÔöº¯Êý£¬ÔòÂú×ã
µÄʵÊý
µÄȡֵ·¶Î§ÊÇ______________£®
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìÁÉÄþׯºÓÊиßÈý9ÔÂÔ¿¼Êýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ
ij¼¸ºÎÌåÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¸©ÊÓͼÖл¡ÏßÊÇ
Ô²»¡£©£¨ £©
![]()
A£®
B£®
C£®
D£®![]()
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨1£©£¨2£© | B£® | £¨1£©£¨3£© | C£® | £¨2£©£¨3£© | D£® | £¨1£©£¨2£©£¨3£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x=$\frac{¦Ð}{2}$ | B£® | x=¦Ð | C£® | x=$\frac{¦Ð}{6}$ | D£® | x=$\frac{¦Ð}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¶ÔÈÎÒâµÄa£¬b£¬´æÔÚµãE£¬Ê¹µÃB1D¡ÍEC1 | |
| B£® | µ±ÇÒ½öµ±a=bʱ£¬´æÔÚµãE£¬Ê¹µÃB1D¡ÍEC1 | |
| C£® | µ±ÇÒ½öµ±a¡Ýbʱ£¬´æÔÚµãE£¬Ê¹µÃB1D¡ÍEC1 | |
| D£® | µ±ÇÒ½öµ±a¡Übʱ£¬´æÔÚµãE£¬Ê¹µÃB1D¡ÍEC1 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com