函数。
(1) 判断并证明函数的奇偶性;
(2) 若,证明函数在(2,+)单调增;
(3) 对任意的,恒成立,求的范围。
科目:高中数学 来源: 题型:解答题
已知函数,(其中实数,是自然对数的底数).
(Ⅰ)当时,求函数在点处的切线方程;
(Ⅱ)求在区间上的最小值;
(Ⅲ) 若存在,使方程成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(1)若在上单调递增,求的取值范围;
(2)若定义在区间D上的函数对于区间上的任意两个值总有以下不等式成立,则称函数为区间上的 “凹函数”.试证当时,为“凹函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分14分) 定义在上的函数同时满足以下条件:
①在上是减函数,在上是增函数;②是偶函数;
③在处的切线与直线垂直.
(1)求函数的解析式;
(2)设,求函数在上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函数为自然对数的底数).
当时,求的单调区间;若函数在上无零点,求最小值;
若对任意给定的,在上总存在两个不同的),使成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com