分析 求得函数f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间.进而得到函数的极大值点,即可得到所求值.
解答 解:函数f(x)=$\frac{x-2}{e^x}$的导数为f′(x)=$\frac{{e}^{x}-(x-2){e}^{x}}{{e}^{2x}}$=$\frac{3-x}{{e}^{x}}$,
由x>3时,f′(x)<0,可得f(x)在(3,+∞)递减;
由x<3时,f′(x)>0,可得f(x)在(-∞,3)递增.
即有f(x)在x=3处取得极大值.
由题意可得x0=3.
故答案为:3.
点评 本题考查导数的运用:求单调区间和极值,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 0或1 | C. | 3 | D. | 0或3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$| | B. | ($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{{a}^{2}}$•$\overrightarrow{{b}^{2}}$ | C. | 若$\overrightarrow{a}$⊥($\overrightarrow{b}$-$\overrightarrow{c}$)则$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$ | D. | 若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$则$\overrightarrow{b}$=$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | σ4 | B. | σ5 | C. | σ2τ | D. | τσ2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{1}{e}$ | B. | y=e | C. | y=x | D. | y=x-e+$\frac{1}{e}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com