精英家教网 > 高中数学 > 题目详情
△ABC中,点D在边AB上,CD平分∠ACB,CB=1,CA=3,
CA
CB
=2,则CD=(  )
A、
30
4
B、
6
2
C、
15
8
D、
3
2
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用向量的数量积,求出cos∠ACB,再利用倍角公式,求出cos∠ACE,结合三角形的相关知识,即可求出CD.
解答: 解:延长CB至点F,使CF=CA=3,连接AF,并延长CD交AF于点E,过点E作AB的平行线交CF于H.
CA
CB
=2,CB=1,CA=3

cos∠ACB=
2
3

∠ACE=
1
2
∠ACB

cos2∠ACE=
1+cos∠ACB
2
=
5
6

∵∠ACE为锐角
cos∠ACE=
30
6

∵CD平分∠ACB,CA=CF=3
∴CE⊥AF,AE=EF
又∵EH∥BD
∴CD=
1
2
CE
∵CE=AC×cos∠ACE=
30
6
=
30
2

CD=
30
4

故选:A
点评:本题考察了向量的数量积的定义及相关公式,结合倍角公式和三角形的相关知识,有一定的难度,属于难题!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知PA是⊙O的切线,A为切点.PC是⊙O的一条割线,交⊙O于B,C两点,点Q是弦BC的中点.若圆心O在∠APB内部,则∠OPQ+∠PAQ的度数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列语句中是简单命题是(  )
A、
3
不是有理数
B、△ABC是等腰直角三角形
C、负数的平方是正数
D、3x+2<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条不重合的直线m,n,l和两个不重合的平面α、β,下列命题中正确命题个数为(  )
①若m∥n,n?α,则m∥α;②若l⊥α,m⊥β且l⊥m则α⊥β
③若l⊥n,m⊥n,则l∥m④若α⊥β,α∩β=m,n?β,n⊥m,则n⊥α
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin2x-sin(2x+
π
3
)的最小值为(  )
A、0
B、-1
C、-
2
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点作实轴的垂线,交双曲线于A,B两点,若线段AB的长度恰等于焦距,则双曲线的离心率为(  )
A、
5
+1
2
B、
10
2
C、
17
+1
4
D、
22
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列四个命题中
①y=1是幂函数;
②“x<1”是“x<2”的充分不必要条件;
③命题“存在x∈R,x2-2>0”的否定是:“任意x∈R,x2-x<0”
④若a=-1,则函数f(x)=ax2+2x-1只有一个零点.
其中错误的个数有(  )个.
A、4B、2C、3D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x||2x+1|>3},集合B={x|y=
x+1
x-2
}
,则A∩(∁RB)=(  )
A、(1,2)
B、(1,2]
C、(1,+∞)
D、[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

靖国神社是日本军国主义的象征.中国人民珍爱和平,所以要坚决反对日本军国主义.2013年12月26日日本首相安倍晋三悍然参拜靖国神社,此举在世界各国激起舆论的批评.某报的环球舆情调查中心对中国大陆七个代表性城市的550个普通民众展开民意调查.某城市调查体统计结果如下表:
                    性别
中国政府是否
需要在钓鱼岛和其他争议
问题上持续对日强硬
需要 50 250
不需要 100 150
(Ⅰ)试估计这七个代表性城市的普通民众中,认为“中国政府需要在钓鱼岛和其他争议问题上持续对日强硬”的民众所占比例;
(Ⅱ)能否有99.9%以上的把握认为这七个代表性城市的普通民众的民意与性别有关?
(Ⅲ)从被调查认为“中国政府需要在钓鱼岛和其他争议问题上持续对日强硬”的民众中,采用分层抽样的方式抽取6人做进一步的问卷调查,然后在这6人中用简单随机抽样方法抽取2人进行电视专访,记被抽到的2人中女性的人数为X,求X的分布列.
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

同步练习册答案