精英家教网 > 高中数学 > 题目详情
在下列四个命题中
①y=1是幂函数;
②“x<1”是“x<2”的充分不必要条件;
③命题“存在x∈R,x2-2>0”的否定是:“任意x∈R,x2-x<0”
④若a=-1,则函数f(x)=ax2+2x-1只有一个零点.
其中错误的个数有(  )个.
A、4B、2C、3D、1
考点:命题的真假判断与应用
专题:简易逻辑
分析:①y=1为常数函数,不是幂函数;
②由“x<1”⇒“x<2”,反之不成立,即可判断出;
③利用命题的否定即可判断出;
④若a=-1,则函数f(x)=ax2+2x-1=-(x-1)2,即可得出函数零点的个数.
解答: 解:①y=1为常数函数,不是幂函数,因此不正确;
②由“x<1”⇒“x<2”,反之不成立,因此“x<1”是“x<2”的充分不必要条件,正确;
③命题“存在x∈R,x2-2>0”的否定应是:“任意x∈R,x2-x≤0”,因此不正确;
④若a=-1,则函数f(x)=ax2+2x-1=-(x-1)2,只有一个零点,正确.
综上可知:只有②④正确.
故选:B.
点评:本题综合考查了幂函数的意义、简易逻辑的有关知识、函数的零点等基础知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且an=n•2n-1,则Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|x2-9≤0},B={x|log2x>0},则A∩∁UB=(  )
A、{x|0x<3}
B、{x|-3≤x≤1}
C、{x|x<0}
D、{x|1<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,点D在边AB上,CD平分∠ACB,CB=1,CA=3,
CA
CB
=2,则CD=(  )
A、
30
4
B、
6
2
C、
15
8
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a∈R,a*0=a;
(2)对任意a,b,c∈R,(a*b)*c=(ab)*c+(a*c)+(b*c)-2c.
如:3*2=(3*2)*0=(3×2)*0+(3*0)+(2*0)-2×0=6+3+2-0=11.
关于函数f(x)=(2x)*
1
2x
的性质,有如下说法:
①函数f(x)的最小值为3;     
②函数f(x)的图象关于点(0,1)成中心对称;
③函数f(x)为奇函数;   
④函数f(x)的单调递增区间为(-∞,-
1
2
),  &(
1
2
,+∞)

其中所有正确说法的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x≥1
y≥0
2≤x+2y≤4
,则x2+y2的取值范围是(  )
A、[
4
5
16
5
]
B、[
5
4
,16]
C、[
5
2
,4]
D、[
2
5
5
4
5
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

min{f(x),g(x)}=
f(x),(f(x)≤g(x))
g(x),(f(x)>g(x))
.若f(x)=x2+px+q的图象经过两点(α,0),(β,0),且存在整数n,使得n<α<β<n+1成立,则(  )
A、min{f(n),f(n+1)}>
1
4
B、min{f(n),f(n+1)}<
1
4
C、min{f(n),f(n+1)}=
1
4
D、min{f(n),f(n+1)}≥
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x+a,g(x)=
1
4
(x2+3),若g(f(x))=x2+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-1-x.
(Ⅰ)求f(x)的最小值;
(Ⅱ)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设g(x)=(f′(x)+1)(x2-1),试问函数g(x)在(1,+∞)上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案