精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x3+3x2+9x+a,在区间[-2,2]上的最大值为20,则实数a=(  )
A、2B、-2C、3D、-3
考点:利用导数求闭区间上函数的最值
专题:导数的概念及应用
分析:先求出端点的函数值f(-2)与f(2),比较f(2)与f(-2)的大小,然后根据函数f(x)在[-1,2]上单调递增,在[-2,-1]上单调递减,得到f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,建立等式关系求出a.
解答: 解:∵f′(x)=-3x2+6x+9.
令f′(x)<0,解得x<-1或x>3,
所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
∵f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,
∴f(2)>f(-2).
因为在(-1,3)上f′(x)>0,所以f(x)在[-1,2]上单调递增,
又由于f(x)在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有22+a=20,
解得a=-2.
故选:B
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.以及在闭区间上的最值问题等基础知识,同时考查了分析与解决问题的综合能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正四棱锥的侧棱长都为5,全面积为16,求它的底面边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

将圆x2+y2+2x-2y=0按向量
a
=(-1,1)平移得到⊙O1,直线l与⊙O1相交于A、B两点,若在⊙O1上存在点C,使
OC
+
OA
+
OB
=0,且
OC
a
,求直线l的方程及△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P到点(4,0)的距离等于它到y轴的距离,求P点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:sin2α+cosαcos(
π
3
+α)-sin2
π
6
-α)的值是与α无关的定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若在抛物线y=ax2(a>0)的上方做一个半径为r的圆与抛物线相切于原点O,且该圆与抛物线没有别的公共点,则r的最大值是?

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:sin122°cos37°-cos58°sin143°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x-3x-1,点(n,an)在f(x)的图象上,{an}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增数列{an}满足:a1=1,2an+1=an+an+2(n∈N*),且a1、a2、a4成等比数列.
(1)求数列{an}的通项公式an
(2)若bn=2an+1,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

同步练习册答案