(13分) 设函数.
(1)当时,求函数在上的最大值;
(2)记函数,若函数有零点,求的取值范围.
(1)(2)。
解析试题分析:(1)化简函数f(x)的解析式,在[1,m]上求函数的最大值.
(2)函数有零点即对应方程有解,得到m的解析式m=h(x),通过导数符号确定h(x)=lnx-x|x-1|的单调性,由h(x)的单调性确定h(x)的取值范围,即得m的取值范围.
(1)当,时,
∵函数在上单调递增 ∴
(2)函数的定义域为
函数有零点即方程有解
即有解
令 当时
∵
∴函数在上是增函数,∴
当时,
∵
∴函数在上是减函数,∴
∴方程有解时
即函数有零点时的取值范围为[
考点:本题主要是考查用分类讨论的方法求函数最大值,利用导数求函数值域,及化归与转化的思想方法.
点评:解决该试题的关键是根据函数有零点,转化为有解,那么借助于分离参数的思想,求解等式右边函数的值域即可。
科目:高中数学 来源: 题型:解答题
(11分)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和组成数对(,并构成函数
(Ⅰ)写出所有可能的数对(,并计算,且的概率;
(Ⅱ)求函数在区间[上是增函数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知函数为奇函数,为常数,
(1)求实数的值;
(2)证明:函数在区间上单调递增;
(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为
(1)当时,写出失事船所在位置的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向 (若确定方向时涉及到的角为非特殊角,用符号及其满足的条件表示即可)
(2)问救援船的时速至少是多少海里才能追上失事船?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义在(-∞,—1)∪(1,+∞)上的奇函数满足:①f(3)=1;②对任意的x>2, 均有f(x)>0,③对任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1)
⑴试求f(2)的值;
⑵证明f(x)在(1,+∞)上单调递增;
⑶是否存在实数a,使得f(cos2θ+asinθ)<3对任意的θ(0,π)恒成立?若存在,请求出a的范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=-对称,且f′(1)=0.
(1)求实数a,b的值;
(2)讨论函数f(x)的单调性,并求出单调区间 。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com