(本小题满分14分)
已知
(Ⅰ)求;
(Ⅱ)判断并证明的奇偶性与单调性;
(Ⅲ)若对任意的,不等式恒成立,求的取值范围。
(1)则;(2)函数为奇函数。证明见解析。
(3).
解析试题分析:(1)利用换元法:令t=logax⇒x=at,代入可得f(t)从而可得函数f(x)的解析式
(2)由(1)得f(x)定义域为R,可求函数的定义域,先证奇偶性:代入f(-x)=-f(x),从而可得函数为奇函数。再证单调性:利用定义任取x1<x2,利用作差比较f(x1)-f(x2)的正负,从而确当f(x1)与f(x2)的大小,进而判断函数的单调性
(3)根据上面的单调性的证明以及定义域得到不等式的求解。
解:(1)令
则 ………3分
(2)
∴函数为奇函数。 ………5分
当,任取
-
==
=
,
类似可证明当,综上,无论,上都是增函数。 ………9分
(3)不等式化为
∵上都是增函数,∴恒成立
即对恒成立,∴
故的取值范围. ………14分
考点:本试题主要考查了函数性质的三点:①利用换元法求函数的解析式,这是求函数解析式中最为重要的方法,要注意掌握,解答此类问题的注意点:换元后要确定新元的范围,从而可得所要求的函数的定义域②函数奇偶性的判断。
点评:解题的关键是利用奇偶性的定义③利用定义判断函数单调性的步骤(i)任设x1<x2(也可x1>x2)(ii)作差f(x1)-f(x2)(iii)定号,给出结论.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数.
(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)若函数是闭函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如下左图,已知底角为450的等腰三角形ABC,底边AB的长为2,当一条垂直于AB的直线L从左至右移动时,直线L把三角形ABC分成两部分,令AD=,
(1) 试写出左边部分的面积与x的函数解析式;
(2) 在给出的坐标系中画出函数的大致图象。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(附加题)本小题满分10分
已知是定义在上单调函数,对任意实数有:且时,.
(1)证明:;
(2)证明:当时,;
(3)当时,求使对任意实数恒成立的参数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com