精英家教网 > 高中数学 > 题目详情
18.在边长为1的正方形ABCD中,且$\overrightarrow{BE}$=μ$\overrightarrow{AD}$,$\overrightarrow{CF}$=-μ$\overrightarrow{AB}$,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=(  )
A.-1B.1C.2-2μD.2μ-1

分析 根据向量的加减的几何意义和向量的数量积即可求出.

解答 解:$\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BE}$=$\overrightarrow{AB}+μ\overrightarrow{AD}$,$\overrightarrow{AF}=\overrightarrow{AD}+\overrightarrow{DF}=\overrightarrow{AD}+({1-μ})\overrightarrow{AB}$,
所以则$\overrightarrow{AE}$•$\overrightarrow{AF}$=$({\overrightarrow{AB}+μ\overrightarrow{AD}})•({\overrightarrow{AD}+({1-μ})\overrightarrow{AB}})$=1.
故选:B

点评 本题考查了向量的加减的几何意义和向量的数量积的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标xOy中,已知点A(1,0),B(4,0),若满足条件|PA|=$\frac{1}{2}$|PB|,则动点P的轨迹方程为x2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某校为了调查高三年级参加某项户外活动的文科生和理科生的参与情况,用简单随机抽样,从报名参加活动的所有学生中抽取60名学生,已知每位学生被抽取的概率为0.05.若按文科生和理科生两部分采取分层抽样,共抽取30名学生,其中24名是理科生,则报名参加活动的文科生共有240人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.集合U={1,2,3,4,5,6},A={2,3},B={x∈Z|x2-6x+5<0},∁U(A∩B)=(  )
A.{1,5,6}B.{1,4,5,6}C.{2,3,4}D.{1,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC中,A=30°,AB=2$\sqrt{3}$,2≤BC≤2$\sqrt{3}$,则△ABC面积的范围是$(0,\sqrt{3}]∪[2\sqrt{3},3\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.我国古代数学名著《数书九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1536石,验得米内夹谷,抽样取米一把,数得224粒内夹谷28粒,则这批米内夹谷约(  )
A.134石B.169石C.192石D.338石

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若变量x,y满足约束条件$\left\{\begin{array}{l}{y≥x}\\{y≤1-x}\\{3x≥y}{\;}\end{array}\right.$,则目标函数z=2x+4y的最大值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=ln$\frac{a-x}{x+1}$的定义域为P,不等式|x-1|≤1的解集为Q.
(1)若a=5,求P;
(2)若Q⊆P,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{cos(πx-π)}{{2}^{x}+{2}^{2-x}}$(x∈R),给出下面四个命题:
①函数f(x)的图象一定关于某条直线对称;
②函数f(x)在R上是周期函数;
③函数f(x)的最大值为$\frac{1}{4}$;
④对任意两个不相等的实数${x_1},{x_2}∈(0,\;\;\frac{3}{2})$,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>\frac{1}{10}$成立.
其中所有真命题的序号是①③.

查看答案和解析>>

同步练习册答案