分析 作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答
解:作出不等式组对应的平面区域如图:
由z=2x+4y得y=-$\frac{1}{2}$x+$\frac{z}{4}$,
平移直线y=-$\frac{1}{2}$x+$\frac{z}{4}$,由图象可知当直线y=-$\frac{1}{2}$x+$\frac{z}{4}$经过点A时,
直线y=-$\frac{1}{2}$x+$\frac{z}{4}$的截距最大,此时z最大,
由$\left\{\begin{array}{l}{3x=y}\\{y=1-x}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{4}}\\{y=\frac{3}{4}}\end{array}\right.$,
即A($\frac{1}{4}$,$\frac{3}{4}$),
此时z=2×$\frac{1}{4}$+4×$\frac{3}{4}$=$\frac{7}{2}$,
故答案为:$\frac{7}{2}$
点评 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 2-2μ | D. | 2μ-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com