精英家教网 > 高中数学 > 题目详情
15.运行如图所示的伪代码,其结果为17.

分析 根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S的值.

解答 解:根据伪代码所示的顺序,
逐框分析程序中各变量、各语句的作用可知:
该程序的作用是
累加并输出S=1+1+3+5+7的值,
所以S=1+1+3+5+7=17.
故答案为:17.

点评 本题主要考查了程序代码和循环结构,依次写出循环得到的S,I的值是解题的关键,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小值为-2,且它的图象经过点(0,$\sqrt{3}$)和($\frac{5π}{6}$,0),且函数f(x)在[0,$\frac{π}{6}$]上单调递增.
(I)求f(x)的解析式;
(H)若x∈[0,$\frac{5π}{8}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.电信局为了配合客户不同需要,设有A,B两种优惠方案.这两种方案应付话费(元)与通话时间x(min)之间的关系如图所示,其中D的坐标为($\frac{2120}{3}$,230).
(1)若通话时间为2小时,按方案A,B各付话费多少元?
(2)方案B从500分钟以后,每分钟收费多少元?
(3)通话时间在什么范围内,方案B比方案A优惠?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的三边长度分别是2,3,x,由所有满足该条件的x构成集合M,现从集合M中任取一x值,所得△ABC恰好是钝角三角形的概率为(  )
A.$\frac{{4-\sqrt{13}+\sqrt{5}}}{4}$B.$\frac{{5-\sqrt{13}}}{4}$C.$\frac{3}{4}$D.$\frac{{\sqrt{5}-1}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.通锡苏学大教育欲举办主题为“我环保、我行动”的环保知识竞猜活动.某校区准备从甲、乙、丙、丁四名同学中随机的选取两名代表参加比赛,则甲、乙两人至少有一人被选中的概率为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“α≠β”是“cosα≠cosβ”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分又不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示的三角形数阵叫“牛顿调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$(n≥2),每个数是它下一行左右相邻两数的和,如$\frac{1}{1}$=$\frac{1}{2}$+$\frac{1}{2}$,=$\frac{1}{2}$=$\frac{1}{3}$+$\frac{1}{6}$,$\frac{1}{3}$=$\frac{1}{4}$+$\frac{1}{12}$,…,
则(1)第6行第2个数(从左往右数)为$\frac{1}{30}$;
(2)第n行第3个数(从左往右数)为$\frac{2}{n(n-1)(n-2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校为了解高一学生的数学水平,随机抽取了高一男,女生各40人参加数学等级考试,得到男生数学成绩的频数分布表和女生数学成绩的频率分布直方图如下:
男生数学成绩的频数分布表
成绩分组[50,60)[60,70)[70,80)[80,90)[90,100]
频数2816104

(Ⅰ)画出男生数学成绩的频率分布直方图,并比较该校高一男,女生数学成绩的方差大小;(只需写出结论)
(Ⅱ)根据女生数学成绩的频率分布直方图,估计该校高一女生的数学平均成绩;
(Ⅲ)依据学生的数学成绩,将学生的数学水平划分为三个等级:
数学成绩低于70分70~90分不低于90分
数学水平一般良好优秀
估计该校高一男,女生谁的“数学水平良好”的可能性大,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某城市有甲、乙两种报纸供居民们订阅,记事件A为“只订阅甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”.下列是对立事件的是(  )
A.A与CB.B与EC.B与CD.C与E

查看答案和解析>>

同步练习册答案