精英家教网 > 高中数学 > 题目详情
12.若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小值为-2,且它的图象经过点(0,$\sqrt{3}$)和($\frac{5π}{6}$,0),且函数f(x)在[0,$\frac{π}{6}$]上单调递增.
(I)求f(x)的解析式;
(H)若x∈[0,$\frac{5π}{8}$],求f(x)的值域.

分析 (I)依题意,易求A=2,φ=$\frac{π}{3}$;又它的图象经过点($\frac{5π}{6}$,0),可得:$\frac{5π}{6}$ω+$\frac{π}{3}$=kπ,k∈Z.分点($\frac{5π}{6}$,0)为半周期点与整周期点讨论,即可求得满足条件的函数解析式,f(x)=2sin(ωx+$\frac{π}{3}$),最大的值点ωx+$\frac{π}{3}$=$\frac{π}{2}$⇒x=$\frac{π}{6ω}$,令 $\frac{π}{6ω}$≥$\frac{π}{6}$,可解得ω的取值范围,从而可得函数所有可能的解析式;
(Ⅱ)利用正弦函数的图象和性质,可求得f(x)的值域.

解答 解:(I)依题意知,A=2,f(0)=2sinφ=$\sqrt{3}$,即sinφ=$\frac{\sqrt{3}}{2}$,
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$;
∴f(x)=2sin(ωx+$\frac{π}{3}$);
又它的图象经过点($\frac{5π}{6}$,0),
∴$\frac{5π}{6}$ω+$\frac{π}{3}$=kπ,k∈Z.
当点($\frac{5π}{6}$,0)为半周期点时,$\frac{5π}{6}$ω+$\frac{π}{3}$=π⇒ω=$\frac{4}{5}$;
当点( $\frac{5π}{6}$,0)为整周期点时,$\frac{5π}{6}$ω+$\frac{π}{3}$=2π⇒ω=2.
∴满足条件的函数解析式为f(x)=2sin($\frac{4}{5}$x+$\frac{π}{3}$)或f(x)=2sin(2x+$\frac{π}{3}$).
设函数f(x)在(0,$\frac{π}{6}$]上单调递增,
∵f(x)=2sin(ωx+$\frac{π}{3}$),
最大的值点ωx+$\frac{π}{3}$=$\frac{π}{2}$⇒x=$\frac{π}{6ω}$,
令$\frac{π}{6ω}$≥$\frac{π}{6}$,解得0<ω≤1;
∴函数f(x)在(0,$\frac{π}{6}$]上单调递增,ω取值范围为ω∈(0,1],
∵ω=$\frac{4}{5}$<1满足题意,ω=2>1不满足题意,
综上:满足题意,且在(0,$\frac{π}{6}$]上单调递增的函数解析式只有f(x)=2sin($\frac{4}{5}$x+$\frac{π}{3}$);
(Ⅱ)∵x∈[0,$\frac{5π}{8}$],
∴$\frac{4}{5}$x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{5π}{6}$],
∴f(x)=2sin($\frac{4}{5}$x+$\frac{π}{3}$)∈[1,2].

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,着重考查正弦函数的单调性与最值,考查综合分析与应用能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.某市有大、中、小型商店共1500家,它们的家数之比为1:5:9,要调查商店的每日零售额情况,要求从抽取其中的30家商店进行调查,则大、中、小型商店分别抽取家数是(  )
A.2,10,18B.4,10,16C.10,10,10D.8,10,12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:log236-2log23=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足:an≠0,a1=$\frac{1}{3}$,an-an+1=2an•an+1.(n∈N*).
(1)求证:{$\frac{1}{{a}_{n}}$}是等差数列,并求出an
(2)证明:a1a2+a2a3+…+anan+1<$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-mx+1=0},且A∪B=A,A∩C=C,求实数a、m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知抛物线y=ax2+bx+c(a≠0)的图象过原点,并交x轴于A(-6,0),抛物线的顶点B的纵坐标为-$\sqrt{3}$.
(1)求抛物线解析式,并求其顶点B的坐标;
(2)在抛物线上是否存在点Q,使得△AQ0与△AOB相似,如果存在.请求出点Q的坐标;如果不存在.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.两点A(1,0),B(3,2$\sqrt{3}$)到直线l的距离均等于1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知${a}^{\frac{1}{2}}$+${a}^{-\frac{1}{2}}$=3,则a+a-1=7,a2+a-2=47.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.运行如图所示的伪代码,其结果为17.

查看答案和解析>>

同步练习册答案