精英家教网 > 高中数学 > 题目详情
17.如图,已知抛物线y=ax2+bx+c(a≠0)的图象过原点,并交x轴于A(-6,0),抛物线的顶点B的纵坐标为-$\sqrt{3}$.
(1)求抛物线解析式,并求其顶点B的坐标;
(2)在抛物线上是否存在点Q,使得△AQ0与△AOB相似,如果存在.请求出点Q的坐标;如果不存在.请说明理由.

分析 (1)由题意可得x=0,y=0;x=-6,y=0,对称轴为x=-3,此时y=-$\sqrt{3}$,代入二次函数解析式,解方程组即可得到所求解析式,以及顶点的坐标;
(2)讨论当Q与B重合,显然成立;不重合,求得△AOB的形状,讨论Q在第一象限、第二象限,由任意角的三角函数的定义,即可求得Q的坐标,即可判断存在.

解答 解:(1)由题意可得x=0,y=0;x=-6,y=0,
对称轴为x=-3,此时y=-$\sqrt{3}$,
即有$\left\{\begin{array}{l}{c=0}\\{36a-6b+c=0}\\{9a-3b+c=-\sqrt{3}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{\sqrt{3}}{9}}\\{b=\frac{2\sqrt{3}}{3}}\\{c=0}\end{array}\right.$,
可得二次函数y=$\frac{\sqrt{3}}{9}$x2+$\frac{2\sqrt{3}}{3}$x,B(-3,-$\sqrt{3}$);
(2)当Q与B重合,△AQ0与△AOB相似;
当Q与B不重合,由△AOB为等腰三角形,
且tan∠AOB=$\frac{\sqrt{3}}{3}$,可得∠AOB=30°,∠ABO=120°,
若△AQ0与△AOB相似,
当Q在第二象限时,则∠QAO=120°,且△AQO为等腰三角形,
即有|AQ|=6,Q(-6-6cos60°,6sin60°),即为Q(-9,3$\sqrt{3}$);
当Q在第一象限时,则∠QOA=120°,且△AQO为等腰三角形,
即有|OQ|=6,Q(6cos60°,6sin60°),即为Q(3,3$\sqrt{3}$).
综上可得,在抛物线上存在点Q,且为(-3,-$\sqrt{3}$),或(-9,-3$\sqrt{3}$),(3,3$\sqrt{3}$),
使得△AQ0与△AOB相似.

点评 本题考查二次函数的解析式的求法,注意运用待定系数法,考查三角形的相似,注意运用三角函数的定义,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)满足:f(x+y)=f(x)+f(y),当x<0时,f(x)<0.求证:f(x)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某游泳池先开进水管注水,使用完毕后开排水管排水,存水量Q(吨)与时间t(小时)之间的函数关系如图,则Q关于t的函数解析式为Q(t)=$\left\{\begin{array}{l}{20t,}&{0≤t≤2}\\{40,}&{2<t<5}\\{-\frac{40}{3}t+\frac{320}{3},}&{5<t≤8}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f($\frac{π}{4}$)=0,其中a∈R,θ∈(0,π),则f($\frac{3π}{16}$)=-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小值为-2,且它的图象经过点(0,$\sqrt{3}$)和($\frac{5π}{6}$,0),且函数f(x)在[0,$\frac{π}{6}$]上单调递增.
(I)求f(x)的解析式;
(H)若x∈[0,$\frac{5π}{8}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为分析学生初中升学的数学成绩对高一数学学习的影响,在高一年级随机抽取10名学生,了解他们的人学数学成绩和高一期末考试数学成绩如下表:
学生编号 1 2 3 4 6 7 8 9 10
 入学成绩(x/分) 63 6745  88 81 71 52 99 58 76
高一期末成绩(y/分)  6578  52 82 9289  73 98 5675
(1)画出散点图;
(2)对变量x与y进行相关性检验,如果x与y之间具有线性相关关系,求出回归直线方程.
(3)若某学生人学的数学成绩为80分,试估计他在高一期末考试中的数学成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=cos$\frac{π}{3}$x,则f(1)+f(2)+…+f(2015)=-337.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设3f(x)+2f($\frac{1}{x}$)=4x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“α≠β”是“cosα≠cosβ”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分又不必要

查看答案和解析>>

同步练习册答案