分析 (1)设A(x1,y1),B(x2,y2),M(0,$\frac{p}{4}$),由$\left\{\begin{array}{l}{{x}^{2}=2py}\\{y=x-1}\end{array}\right.$,消去y整理得x2-2px+2p=0,
直线y=$\frac{p}{4}$平分∠AFB,可得kAM+kBM=0,利用韦达定理求得p,即可
(2)由题意知,直线AB的斜率存在,且不为零,
设直线AB的方程为:y=kx+b (k≠0,b>0),
由$\left\{\begin{array}{l}{y=kx+b}\\{{x}^{2}=2py}\end{array}\right.$,得x2-2pkx-2pb=0,∴$\left\{\begin{array}{l}{△=4{p}^{2}{k}^{2}+8pb}\\{{x}_{1}+{x}_{2}=2pk}\\{{x}_{1}{x}_{2}=-2pb}\end{array}\right.$,
由已知可得b=$\frac{p}{2}$.直线AB的方程为:y=kx+$\frac{p}{2}$.
作AA′⊥x轴,BB′⊥x轴,垂足为A′,B′,
$\frac{|PQ|}{|PA|}$+$\frac{|PQ|}{|PB|}$=$\frac{|OQ|}{|A′A|}$+$\frac{|OQ|}{|B′B|}$=$\frac{p}{2}×\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$,得k,
解答
解:(1)设A(x1,y1),B(x2,y2),M(0,$\frac{p}{4}$),
由$\left\{\begin{array}{l}{{x}^{2}=2py}\\{y=x-1}\end{array}\right.$,消去y整理得x2-2px+2p=0,
则△=4p2-8p,x1+x2=2p,x1x2=2p,
∵直线y=$\frac{p}{4}$平分∠AFB,∴kAM+kBM=0,
∴$\frac{{y}_{1}-\frac{p}{4}}{{x}_{1}}+\frac{{y}_{2}-\frac{p}{4}}{{x}_{2}}=0$,即:$\frac{{x}_{1}-1-\frac{p}{4}}{{x}_{1}}+\frac{{x}_{2}-1-\frac{p}{4}}{{x}_{2}}=2-(1+\frac{p}{4})\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}=0$,
∴p=4,满足△>0,∴抛物线C标准方程为x2=8y.
(2)由题意知,直线AB的斜率存在,且不为零,
设直线AB的方程为:y=kx+b (k≠0,b>0),
由$\left\{\begin{array}{l}{y=kx+b}\\{{x}^{2}=2py}\end{array}\right.$,得x2-2pkx-2pb=0,∴$\left\{\begin{array}{l}{△=4{p}^{2}{k}^{2}+8pb}\\{{x}_{1}+{x}_{2}=2pk}\\{{x}_{1}{x}_{2}=-2pb}\end{array}\right.$,
∴y1•y2=$\frac{{{x}_{1}}^{2}}{2p}•\frac{{{x}_{2}}^{2}}{2p}=\frac{(-2pb)^{2}}{4{p}^{2}}={b}^{2}$,
∵${y}_{1}{y}_{2}=\frac{{p}^{2}}{4}$,∴b2=$\frac{{p}^{2}}{4}$,∵b>0,∴b=$\frac{p}{2}$.
∴直线AB的方程为:y=kx+$\frac{p}{2}$.
假设存在直线AB,使得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{3}{|PQ|}$,即$\frac{|PQ|}{|PA|}$+$\frac{|PQ|}{|PB|}$=3
作AA′⊥x轴,BB′⊥x轴,垂足为A′,B′,
∴$\frac{|PQ|}{|PA|}$+$\frac{|PQ|}{|PB|}$=$\frac{|OQ|}{|A′A|}$+$\frac{|OQ|}{|B′B|}$=$\frac{p}{2}×\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$
∵${y}_{1}+{y}_{2}=k({x}_{1}+{x}_{2}+p=2p{k}^{2}+p$,y1•y2=$\frac{{p}^{2}}{4}$,
∴$\frac{|PQ|}{|PA|}$+$\frac{|PQ|}{|PB|}$=$\frac{p}{2}×\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$=$\frac{p}{2}×\frac{2p{k}^{2}+p}{\frac{{p}^{2}}{4}}$=4k2+2,由4k2+2=3得k=$±\frac{1}{2}$,
故存在直线AB,使得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{3}{|PQ|}$,且直线AB方程为y=$±\frac{1}{2}x+\frac{p}{2}$.
点评 本题考查了抛物线的方程、性质,考查了直线与抛物线的位置关系,考查了计算能力、转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | tan(sinA)<tan(cosB) | B. | tan(sinA)>tan(cosB) | C. | sin(tanA)<cos(tanB) | D. | sin(tanA)>cos(tanB) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4985 | B. | 8185 | C. | 9970 | D. | 24555 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com