精英家教网 > 高中数学 > 题目详情
6.已知函数y=f(x)在[0,+∞)上是递减函数,则f($\frac{3}{4}$)≥f(a2-a+1)(填“≥”“≤”“>”“<”).

分析 由题意利用函数的单调性的定义,得出结论.

解答 解:∵函数y=f(x)在[0,+∞)上是递减函数,
a2-a+1=${(a-\frac{1}{2})}^{2}$+$\frac{3}{4}$≥$\frac{3}{4}$,则f($\frac{3}{4}$)≥f(a2-a+1),
故答案为:≥.

点评 本题主要考查函数的单调性的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=5,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ=60°,则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.曲线y=x(3lnx+1)在点(1,1)处的切线的斜率为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an}满足an+1(an-1-an)=an-1(an-an+1),若a1=2,a2=1,则a20=(  )
A.$\frac{1}{{{2^{10}}}}$B.$\frac{1}{2^9}$C.$\frac{2}{21}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A(x1,y1),B(x2,y2)是抛物线C:x2=2py(p>0)上不同两点.
(1)设直线l:y=$\frac{p}{4}$与y轴交于点M,若A,B两点所在的直线方程为y=x-1,且直线l:y=$\frac{p}{4}$恰好平分∠AFB,求抛物线C的标准方程.
(2)若直线AB与x轴交于点P,与y轴的正半轴交于点Q,且y1y2=$\frac{{p}^{2}}{4}$,是否存在直线AB,使得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{3}{|PQ|}$?若存在,求出直线AB的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-ax,g(x)=$\frac{1}{x}$+a.
(1)当a=2 时,求F(x)=f(x)-g(x)在(0,2]的最大值;
(2)讨论函数F(x)=f(x)-g(x) 的单调性;
(3)若f(x)•g(x)≤0 在定义域内恒成立,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}的前n项和Sn满足Sn=2n2-n,则数列{a2n}的前10项和等于(  )
A.380B.390C.400D.410

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足约束条件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-y+2≥0}\\{y≥0}\end{array}}\right.$,则z=3x+2y的最大值为(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{lnx+ax+1}{x}$.
(1)若对任意x>0,f(x)<0恒成立,求实数a的取值范围;
(2)若函数f(x)有两个不同的零点x1,x2(x1<x2),证明:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$>2.

查看答案和解析>>

同步练习册答案