精英家教网 > 高中数学 > 题目详情
11.已知△ABC为锐角三角形,则下列判断正确的是(  )
A.tan(sinA)<tan(cosB)B.tan(sinA)>tan(cosB)C.sin(tanA)<cos(tanB)D.sin(tanA)>cos(tanB)

分析 根据锐角△ABC中A+B>$\frac{π}{2}$,得出$\frac{π}{2}$>A>$\frac{π}{2}$-B>0,
利用正弦函数和正切函数的单调性,即可得出正确的结论.

解答 解:锐角△ABC中,A+B>$\frac{π}{2}$,
∴$\frac{π}{2}$>A>$\frac{π}{2}$-B>0,
又正弦函数在(0,$\frac{π}{2}$)上单调递增,
∴sinA>sin($\frac{π}{2}$-B)=cosB,
又正切函数在(0,1)上单调递增,
∴tan(sinA)>tan(cosB).
故选:B.

点评 本题考查了正弦、正切函数的单调性问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.己知各项均不为0的数列{an}中a1=$\frac{1}{2}$,且n≥2时,an-1-an=an-1an,其前n项和为Sn
(1)求数列{an}的通项公式;
(2)若对于任意正整数n,不等式S2n-Sn>$\frac{m}{16}$恒成立,求常数m所能取得的最大整数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若f(x)=x2+bx+c对任意实数x都有f(1+x)=f(1-x),则f(cos1)与f(cos$\sqrt{2}$)的大小关系是f(cos1)<f(cos$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$f(α)=\frac{{sin({2π-α})cos({π+α})cos({\frac{π}{2}-α})}}{{sin({3π-α})sin({\frac{9π}{2}+α})}}+cos({2π-α})$.
(1)化简f(α);(2)若$f(α)=\frac{{\sqrt{10}}}{5}$,求$\frac{1}{sinα}+\frac{1}{cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=5,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ=60°,则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等边三角形的一个顶点位于抛物线y2=2px的焦点,另外两个顶点在抛物线上,则这个等边三角形的边长(4±2$\sqrt{3}$)|p|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}中,a1=1,an+1=an+2n-1,则a6=(  )
A.31B.32C.63D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A(x1,y1),B(x2,y2)是抛物线C:x2=2py(p>0)上不同两点.
(1)设直线l:y=$\frac{p}{4}$与y轴交于点M,若A,B两点所在的直线方程为y=x-1,且直线l:y=$\frac{p}{4}$恰好平分∠AFB,求抛物线C的标准方程.
(2)若直线AB与x轴交于点P,与y轴的正半轴交于点Q,且y1y2=$\frac{{p}^{2}}{4}$,是否存在直线AB,使得$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{3}{|PQ|}$?若存在,求出直线AB的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案