精英家教网 > 高中数学 > 题目详情
19.若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是(  )
A.2B.3C.4D.6

分析 在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,这两个函数图象的交点个数即为所求.

解答 解:∵偶函数f(x)满足f(x+2)=f(x),故函数的周期为2.
当x∈[0,1]时,f(x)=x,故当x∈[-1,0]时,f(x)=-x.
函数y=f(x)-log3|x|的零点的个数等于函数y=f(x)的图象与函数y=log3|x|的图象的交点个数.
在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示:
显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点,
故选:C

点评 本题考查了根的存在性及根的个数判断,以及函数与方程的思想,根据函数零点和方程的关系进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,已知等边△ABC的边长为2,圆A的半径为1,PQ为圆A的任意一条直径.
(1)判断$\overrightarrow{BP}•\overrightarrow{CQ}-\overrightarrow{AP}•\overrightarrow{CB}$的值是否会随点P的变化而变化,请说明理由.
(2)求$\overrightarrow{BP}•\overrightarrow{CQ}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b∈R,i2=-1,则“a=b=1”是“$\frac{2+2i}{1-i}={(a+bi)^2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求满足下列条件的解析式
(1)已知f($\frac{2}{x}+1$)=lgx,求f(x);
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0,$\frac{π}{2}$),则函数g(x)=cos(2x-φ)的图象可由f(x)图象向_____平移_____个单位得到.(  )
A.左  $\frac{π}{3}$B.左  $\frac{π}{6}$C.右  $\frac{π}{3}$D.右  $\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图所示,两个非共线向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为θ,M,N分别为OA与OB的中点,点C在直线MN上,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),则x2+y2的最小值为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC为锐角三角形,则下列判断正确的是(  )
A.tan(sinA)<tan(cosB)B.tan(sinA)>tan(cosB)C.sin(tanA)<cos(tanB)D.sin(tanA)>cos(tanB)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给定两个长度为1的平面向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,它们的夹角为90°.点C在以O为圆心的圆弧$\widehat{AB}$上变动,若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,则xy的范围是(  )
A.(0,1)B.[0,1]C.$({0,\frac{1}{2}})$D.$[{0,\frac{1}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列说法中:
(1)函数f(x)=$\frac{1}{x}$在其定义域内单调递减     
(2)若a>b>0,则a-$\frac{1}{a}>b-\frac{1}{b}$;
(3)若a>0,b>0且2a+b=1,则$\frac{2}{a}+\frac{1}{b}$的最小值为9
(4)函数f(x)=$\frac{ax+1}{x+2}$在(-2,+∞)上是增函数,则实数a的取值范围是$(\frac{1}{2},+∞)$;
(5)已知a,b,c是实数,关于x的不等式ax2+bx+c≤0的解集是空集的充要条件是a>0且△≤0;
正确的序号为为(2),(3),(4).

查看答案和解析>>

同步练习册答案