| A. | 左 $\frac{π}{3}$ | B. | 左 $\frac{π}{6}$ | C. | 右 $\frac{π}{3}$ | D. | 右 $\frac{π}{6}$ |
分析 由题意可得 sin(x+3φ)是偶函数,求得φ=$\frac{π}{6}$,可得f(x)的解析式,再利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0,$\frac{π}{2}$),∴sin(x+3φ)是偶函数,
∴3φ=k•π+$\frac{π}{2}$,k∈Z,∴φ=$\frac{π}{6}$,f(x)=2sinxsin(x+$\frac{π}{2}$)=sin2x,
则函数g(x)=cos(2x-φ)=cos(2x-$\frac{π}{6}$)=sin[(2x-$\frac{π}{6}$)+$\frac{π}{2}$]=sin(2x+$\frac{π}{3}$) 的图象,
可由f(x)图象向左平移$\frac{π}{6}$个单位得到,
故选:B.
点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com